Pinferencia 开源项目教程
2024-09-23 04:04:01作者:胡唯隽
1. 项目介绍
Pinferencia 是一个 Python 库,旨在成为最简单的机器学习推理服务器。它允许用户通过最少的代码快速部署机器学习模型,并提供图形用户界面(GUI)和 REST API 接口。Pinferencia 的设计理念是简单、强大且易于使用,适用于各种机器学习框架,如 TensorFlow、PyTorch 和 Hugging Face 等。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后,通过 pip 安装 Pinferencia:
pip install "pinferencia[streamlit]"
快速启动示例
以下是一个简单的示例,展示如何使用 Pinferencia 部署一个简单的模型:
from pinferencia import Server
class MyModel:
def predict(self, data):
return sum(data)
model = MyModel()
service = Server()
service.register(model_name="mymodel", model=model, entrypoint="predict")
# 启动服务
service.run()
运行上述代码后,你的模型将会在本地启动,并可以通过浏览器访问 http://127.0.0.1:8501/ 查看 GUI 界面。
3. 应用案例和最佳实践
应用案例
案例1:图像分类
使用 Hugging Face 的 Transformers 库进行图像分类:
from transformers import pipeline
from pinferencia import Server
vision_classifier = pipeline(task="image-classification")
def predict(data):
return vision_classifier(images=data)
service = Server()
service.register(model_name="vision", model=predict)
# 启动服务
service.run()
案例2:PyTorch 模型部署
部署一个 PyTorch 模型:
import torch
from pinferencia import Server
# 加载预训练模型
model = torch.load('model.pt')
model.eval()
service = Server()
service.register(model_name="mymodel", model=model)
# 启动服务
service.run()
最佳实践
- 模型注册:确保在注册模型时,
model_name和entrypoint参数设置正确,以便服务能够正确调用模型。 - 错误处理:在实际应用中,建议添加错误处理机制,以确保服务在遇到异常时能够优雅地处理。
- 性能优化:对于大规模部署,可以考虑使用 Pinferencia 的并发处理能力,以提高服务性能。
4. 典型生态项目
Pinferencia 可以与以下生态项目无缝集成:
- Kubeflow:Pinferencia 支持 Kserve API,可以与 Kubeflow 集成,实现大规模的模型部署和管理。
- TensorFlow Serving:Pinferencia 兼容 TensorFlow Serving,可以轻松切换到 TensorFlow Serving 进行生产环境部署。
- TorchServe:对于 PyTorch 用户,Pinferencia 提供了与 TorchServe 的兼容性,方便用户在不同平台之间切换。
通过这些生态项目的集成,Pinferencia 不仅适用于快速原型开发,也适用于生产环境的模型部署。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178