Revnet-public 项目使用教程
2024-09-25 03:11:10作者:庞队千Virginia
1. 项目的目录结构及介绍
Revnet-public 项目的目录结构如下:
revnet-public/
├── resnet/
│ ├── configs/
│ │ ├── cifar_configs.py
│ │ └── imagenet_configs.py
│ └── ...
├── tools/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── run_all_unittests.sh
├── run_cifar_train.py
├── run_imagenet_eval.py
├── run_imagenet_train.py
└── setup.sh
目录结构介绍
- resnet/: 包含与 ResNet 和 RevNet 模型相关的配置文件和代码。
- configs/: 包含 CIFAR 和 ImageNet 数据集的配置文件。
- cifar_configs.py: CIFAR 数据集的配置文件。
- imagenet_configs.py: ImageNet 数据集的配置文件。
- configs/: 包含 CIFAR 和 ImageNet 数据集的配置文件。
- tools/: 包含项目使用的工具和辅助脚本。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- run_all_unittests.sh: 运行所有单元测试的脚本。
- run_cifar_train.py: 用于 CIFAR 数据集训练的脚本。
- run_imagenet_eval.py: 用于 ImageNet 数据集评估的脚本。
- run_imagenet_train.py: 用于 ImageNet 数据集训练的脚本。
- setup.sh: 项目配置和安装脚本。
2. 项目的启动文件介绍
run_cifar_train.py
该脚本用于在 CIFAR 数据集上训练模型。可以通过以下命令启动:
python run_cifar_train.py --dataset [DATASET] --model [MODEL]
- --dataset: 指定数据集,可选值为
cifar-10或cifar-100。 - --model: 指定模型类型,可选值为
resnet-32/110/164或revnet-38/110/164。
run_imagenet_train.py
该脚本用于在 ImageNet 数据集上训练模型。可以通过以下命令启动:
python run_imagenet_train.py --model [MODEL]
- --model: 指定模型类型,可选值为
resnet-50/101或revnet-56/104。
run_imagenet_eval.py
该脚本用于评估在 ImageNet 数据集上训练的模型。可以通过以下命令启动:
python run_imagenet_eval.py --id [EXPERIMENT ID]
- --id: 指定实验 ID,用于加载对应的模型权重。
3. 项目的配置文件介绍
setup.sh
setup.sh 是项目的配置和安装脚本。在运行项目之前,需要先自定义路径并执行该脚本。
cd revnet-public
# 修改 setup.sh 中的路径配置
./setup.sh
resnet/configs/cifar_configs.py 和 resnet/configs/imagenet_configs.py
这两个配置文件分别用于 CIFAR 和 ImageNet 数据集的模型配置。可以根据需要修改这些配置文件中的参数,如学习率、批量大小等。
# 示例:修改 CIFAR 数据集的配置
from resnet.configs.cifar_configs import get_config
config = get_config()
config.learning_rate = 0.01
config.batch_size = 64
通过这些配置文件,可以灵活地调整模型的训练参数,以适应不同的任务和环境。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
282
2.59 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
303
Ascend Extension for PyTorch
Python
109
139
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
169
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
303
39