apt-offline 离线包管理工具技术文档
1. 安装指南
1.1 系统要求
apt-offline 是一个专为 Debian 及其衍生系统(如 Ubuntu)设计的离线包管理工具。因此,使用该工具前,请确保您的系统是基于 Debian 的发行版。
1.2 安装步骤
apt-offline 可以通过以下步骤进行安装:
-
使用 apt 安装
如果您的系统已经连接到互联网,可以直接使用apt命令安装 apt-offline:sudo apt-get update sudo apt-get install apt-offline -
手动安装
如果您的系统无法连接互联网,可以从其他联网的 Debian 系统下载 apt-offline 的.deb包,然后通过 USB 或其他存储设备将其传输到目标系统进行安装:sudo dpkg -i apt-offline_<version>.deb如果安装过程中出现依赖问题,可以运行以下命令修复:
sudo apt-get install -f
2. 项目的使用说明
2.1 基本功能
apt-offline 的主要功能包括:
- 离线安装/升级软件包:在无网络连接的机器上安装或升级软件包及其依赖。
- 下载软件包及其依赖:在联网的机器上下载软件包及其依赖,以便在离线机器上使用。
- 下载完整的错误报告:仅适用于 Debian 系统,下载软件包的完整错误报告。
- 下载源码包及其构建依赖:为开发者提供源码包及其构建依赖的下载功能。
2.2 常用命令
以下是一些常用的 apt-offline 命令示例:
-
生成签名文件
在离线机器上生成一个签名文件,用于指定需要安装或升级的软件包:apt-offline set apt-offline.sig --install-packages <package_name> -
下载软件包
在联网的机器上使用签名文件下载所需的软件包及其依赖:apt-offline get apt-offline.sig --bundle apt-offline.zip -
安装软件包
将下载的软件包传输到离线机器上,并使用以下命令进行安装:apt-offline install apt-offline.zip
3. 项目 API 使用文档
3.1 Python API
apt-offline 提供了 Python API,开发者可以通过编程方式调用其功能。以下是一个简单的示例:
from apt_offline import AptOffline
# 创建 AptOffline 实例
apt_offline = AptOffline()
# 生成签名文件
apt_offline.set_signature_file("apt-offline.sig", install_packages=["vim"])
# 下载软件包
apt_offline.get_packages("apt-offline.sig", "apt-offline.zip")
# 安装软件包
apt_offline.install_packages("apt-offline.zip")
3.2 命令行 API
apt-offline 的命令行接口提供了丰富的选项,可以通过 --help 参数查看详细帮助信息:
apt-offline --help
4. 项目安装方式
4.1 通过源码安装
如果您希望从源码安装 apt-offline,可以按照以下步骤操作:
-
克隆源码仓库
从 GitHub 克隆 apt-offline 的源码:git clone https://github.com/rickysarraf/apt-offline.git cd apt-offline -
安装依赖
安装所需的 Python 依赖:pip install -r requirements.txt -
安装 apt-offline
使用setup.py脚本进行安装:python setup.py install
4.2 通过 Docker 安装
如果您希望在 Docker 容器中使用 apt-offline,可以使用以下 Dockerfile 构建镜像:
FROM debian:latest
RUN apt-get update && apt-get install -y apt-offline
CMD ["apt-offline"]
构建并运行 Docker 容器:
docker build -t apt-offline .
docker run -it apt-offline
通过本文档,您应该能够顺利安装、使用 apt-offline,并了解其基本功能和 API 使用方法。如果您有任何问题或建议,欢迎联系开发者。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00