SCons 4.9.0 发布:构建工具的重要更新与改进
SCons 是一个开源的软件构建工具,它使用 Python 脚本作为构建配置文件,提供了高级的依赖分析和可靠的增量构建能力。作为 Make 工具的现代替代品,SCons 支持跨平台构建,并具有强大的扩展性。最新发布的 SCons 4.9.0 版本带来了一系列功能增强、问题修复和开发改进,标志着该项目在构建工具领域的持续演进。
核心变更与功能增强
SCons 4.9.0 最显著的变化是移除了对 Python 3.6 的支持,现在要求 Python 3.7.0 或更高版本。这一变更反映了项目对现代 Python 特性的依赖,同时也确保了更好的性能和安全性。
在构建环境处理方面,4.9.0 版本改写了覆盖环境(Override environments)的行为。现在,当删除覆盖环境中的项目时,不会同时删除基础环境中的对应项目,解决了之前可能出现的"泄漏"问题。这一改进使得环境管理更加精确和可预测。
对于使用 Microsoft Visual Studio 的项目,新版本改进了 MSVS 解决方案文件的生成逻辑。现在项目文件总是会在解决方案文件之前生成,确保了构建顺序的正确性。同时新增了 auto_filter_projects 可选参数,可以自动从项目参数列表中移除解决方案文件名和节点,避免了错误的项目记录生成。
SCons 的 C 预处理器得到了多项增强:
- 新增了对二进制整数常量的支持
- 修正了八进制整数常量的处理(之前被错误地当作十进制处理)
- 增加了对 z/Z 和 wb/WB 整数后缀的支持
- 改进了宏定义展开值的整数转换方法
实用功能改进
缓存目录(CacheDir)现在会包含一个特殊标记文件,遵循 cachedir 规范,使得备份系统能够识别并忽略这些目录。这一改进使得项目备份更加高效,避免了不必要的数据复制。
变量系统(Variables)新增了"defaulted"属性,可以列出那些使用了默认值的变量名。这一功能使得构建配置的审计更加方便,开发者可以清楚地看到哪些配置项保持了默认值。
对于帮助系统,修复了 env.Help() 和 Help() 函数中参数名不一致的问题,统一使用 local_only 作为参数名,使其功能与名称更加匹配。同时修正了当 Alias 初始创建时没有指定动作的情况下,AddPreAction() 和 AddPostAction() 被忽略的问题。
问题修复与稳定性提升
4.9.0 版本修复了多个关键问题,包括:
- 临时文件清理时机不当的问题(现在会在 SCons 退出时清理,而不是使用时)
- 短选项(单字符选项)处理不正确的问题
- 编译数据库(compilation_db)组件初始化问题,特别是汇编文件条目设置不正确的情况
- 在 Darwin 平台上处理 /etc/paths.d 时的权限问题
- 条件扫描器中宏替换的改进,现在会对 CPPDEFINES 内容进行有限的宏替换
对于 Ninja 构建系统的集成,更新了查找 Ninja 二进制文件的逻辑,以兼容最新版本的 Python Ninja 包(1.11.1.2+)的目录结构变化。同时将 TEMPLATE 规则池从 local_pool 改为 install_pool,以解决潜在的竞态条件问题。
开发工具与类型系统改进
在开发方面,项目继续推进类型提示的现代化:
- 移除了专门的类型工具文件(SCons.Util.sctyping.py),转而使用 Python 的原生注解功能
- 为节点系统(Nodes)实现了完整的类型提示
- 更新了 Ruff 和 Mypy 的配置,增加了新的规则来检测和升级遗留的类型提示语法
Ninja 工具的实现被重构为 ninja_tool 模块,同时保留了 env.Tool('ninja') 的兼容性,避免了与 PyPI 上的 ninja 模块的命名冲突。测试系统中新增了 TestSCons.NINJA_BINARY 来集中管理 Ninja 二进制文件的查找逻辑。
文档与用户体验改进
文档方面进行了大量更新和修正:
- 清理了 gettext 和 pdf/ps 构建器的文档
- 澄清了用户指南中"环境"章节的内容
- 改进了 Repository() 函数的文档说明
- 更新了 Clean 和 NoClean 的文档
- 改进了变量系统的文档
- 修正了用户指南中 Command() 示例,使其使用有效的特殊属性并添加了解释
总结
SCons 4.9.0 是一个重要的版本更新,它不仅带来了功能上的增强和问题修复,还反映了项目对现代 Python 生态的适应。从构建系统的核心功能到开发者体验,再到文档质量,这个版本都做出了全面改进。特别是对 MSVS 和 Ninja 集成的改进,以及对现代类型提示系统的支持,使得 SCons 在复杂的软件开发环境中更加可靠和易用。对于现有用户,升级到这个版本将获得更好的构建体验;对于新用户,现在是一个很好的时机来尝试这个强大的构建工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00