首页
/ 梦境模拟器:探索人类视觉相似度的新维度

梦境模拟器:探索人类视觉相似度的新维度

2024-05-22 20:10:23作者:尤辰城Agatha

梦想模拟器图标 项目页面 | 论文 | Bibtex引用

梦境模拟器(DreamSim)是一个创新的感知图像相似度度量工具,它旨在填补像素级和概念级图像比较之间的空白。当前的感知指标主要基于低层次的颜色和纹理,而无法捕捉到布局、姿势或语义内容等中层差异。尽管像DINO和CLIP这样的模型能够提供高层次和语义判断,但它们可能并不完全符合人类对更细致特征的感知。

通过训练一个模型,将CLIP、OpenCLIP和DINO的嵌入进行拼接,并在大约2万个由扩散模型生成的图像三元组上微调以适应人类的感知判断,梦境模拟器实现了更好的人类相似性判断一致性。这一方法已被证明在图像检索等下游应用中表现优越。

技术分析

梦境模拟器采用了一种混合的方法,结合了低级和高级图像特征,形成一个单一的度量标准。它利用预训练的深度学习模型(如CLIP、DINO)的向量表示,对其进行再训练,以更好地匹配人眼的视觉相似度感知。这使得它不仅能够在像素级别上工作,而且还能理解图像的更高层次内容。

应用场景

  1. 图像检索:在大量图像数据库中快速找到与目标图像最相似的图片。
  2. 图像处理和生成:作为评估生成图像质量的工具,指导算法优化以提高人类感知的相似性。
  3. 计算机视觉研究:作为一个基准来衡量新模型对人类视觉感知的理解程度。

项目特点

  1. 全方位比较:超越传统的像素和局部统计比较,考虑更多图像元素。
  2. 人工智能与人类感知的一致性:通过大量人类判断数据微调,提高了与人类视觉一致性的评分。
  3. 高效单分支模型:提供了轻量级的实现选项,可以在不牺牲太多性能的前提下快速运行。
  4. 灵活应用:支持从简单的相似度计算到复杂的特征提取和损失函数,适用于各种任务。

快速上手

要开始使用梦境模拟器,只需安装库,加载模型,然后计算两个图像之间的距离。它还提供了一个Colab notebook,演示如何利用这个工具进行更深入的操作,包括单一模型的使用、特征提取、图像检索和作为损失函数的使用。

梦境模拟器是一个强大的工具,可以提升你的计算机视觉应用的感知质量。立即尝试并加入这场探索人类视觉理解的新旅程!

# 安装
pip install dreamsim

# 负载模型并计算相似度
from dreamsim import dreamsim
from PIL import Image

model, preprocess = dreamsim(pretrained=True)
img1 = preprocess(Image.open("img1_path")).to("cuda")
img2 = preprocess(Image.open("img2_path")).to("cuda")
distance = model(img1, img2)

为了保持最新更新,请访问项目页面,并查阅相关文档以获取更多信息和示例代码。我们期待你的反馈,一起构建更加智能和直观的图像处理系统!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
25
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
837
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
34
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.93 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
149
26
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
20
2
go-iot-platformgo-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4