首页
/ Modelscope/SWIFT项目中DDP训练时的梯度检查点问题分析

Modelscope/SWIFT项目中DDP训练时的梯度检查点问题分析

2025-05-31 22:06:15作者:胡易黎Nicole

问题背景

在Modelscope/SWIFT项目中使用分布式数据并行(DDP)训练时,开发者遇到了一个典型的PyTorch错误:"Expected to mark a variable ready only once"。这个问题在使用8块H20显卡进行GRPO算法训练时必现,但在单卡环境下不会出现。经过排查,确认这是由2025年2月18日的代码变更引入的问题,回滚到2月17日的版本后问题消失。

技术原理分析

这个错误的核心原因是PyTorch的DDP(分布式数据并行)实现机制与梯度检查点(gradient checkpointing)的交互问题。DDP要求每个参数在反向传播过程中只能被标记为"ready"一次,但在某些梯度检查点配置下,参数可能会被多次访问和标记。

具体来说,这种情况通常由两种原因导致:

  1. 在模型forward函数外部使用了模块参数,导致参数被多个并发的前向-反向传播过程共享
  2. 在多个可重入的反向传播过程中重复使用了相同的参数,例如对模型的同一部分使用了多个检查点函数包装

解决方案

针对这个问题,项目协作者提供了两种有效的解决方案:

  1. 修改梯度检查点配置:在训练命令中添加参数--gradient_checkpointing_kwargs '{"use_reentrant": false}',使用非可重入的梯度检查点实现。

  2. 使用DeepSpeed优化:改用DeepSpeed的zero2或zero3优化阶段,这些优化器对参数更新有更精细的控制,可以避免此类问题。

深入理解

这个问题实际上是PyTorch生态中一个已知的常见问题。DDP的设计假设是模型的计算图在训练过程中保持不变,而某些梯度检查点的实现可能会打破这个假设。非可重入的梯度检查点实现通过不同的内存管理方式避免了参数的重复标记,从而解决了这个问题。

DeepSpeed解决方案则是通过更先进的参数分区和更新策略,从根本上改变了梯度累积和参数更新的方式,不仅解决了这个问题,还能带来额外的内存和计算效率提升。

最佳实践建议

对于使用Modelscope/SWIFT项目进行大规模分布式训练的开发者,建议:

  1. 在启用梯度检查点时,始终明确指定use_reentrant=False参数
  2. 对于特别大的模型,优先考虑使用DeepSpeed的zero3优化阶段
  3. 在更新项目版本后,如果遇到类似问题,首先检查梯度检查点和分布式训练相关的配置
  4. 保持对PyTorch和DeepSpeed最新版本特性的关注,这些框架会不断优化分布式训练的实现

通过理解这些底层原理和解决方案,开发者可以更有效地在Modelscope/SWIFT项目中进行大规模模型训练,避免常见的分布式训练陷阱。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8