在opencv-rust中使用Canny边缘检测与轮廓绘制
2025-07-04 16:58:36作者:董宙帆
概述
本文将介绍如何在Rust中使用opencv-rust库实现Canny边缘检测算法,并将检测到的边缘轮廓绘制到原始图像上。Canny边缘检测是计算机视觉中常用的技术,能够有效地识别图像中的边缘信息。
实现步骤
1. 图像读取与预处理
首先需要读取原始彩色图像,然后将其转换为灰度图像。这是因为Canny边缘检测通常在单通道灰度图像上执行效果最佳。
let mut img: Mat = imgcodecs::imread(origin_path, imgcodecs::IMREAD_COLOR)?;
let mut gray: Mat = Mat::default();
cvt_color(&img, &mut gray, COLOR_BGR2GRAY, 0)?;
2. 应用Canny边缘检测
Canny算法需要设置两个阈值参数:
- 低阈值:用于边缘连接
- 高阈值:用于强边缘检测
- 孔径大小:Sobel算子的大小
let mut edges: Mat = Mat::default();
canny(&gray, &mut edges, 100.0, 200.0, 3, false)?;
3. 查找轮廓
检测到边缘后,使用find_contours函数查找图像中的轮廓。这里需要注意函数参数:
- RETR_EXTERNAL表示只检测最外层轮廓
- CHAIN_APPROX_SIMPLE压缩水平、垂直和对角线段,只保留端点
let mut contours = Vector::<Vector<Point>>::new();
find_contours(
&edges,
&mut contours,
RETR_EXTERNAL,
CHAIN_APPROX_SIMPLE,
Point::default(),
)?;
4. 绘制轮廓到原始图像
将检测到的轮廓绘制到原始彩色图像上,使用绿色线条表示边缘:
draw_contours(
&mut img,
&contours,
-1, // 绘制所有轮廓
Scalar::new(0.0, 255.0, 0.0, 0.0), // 绿色
1, // 线宽
LINE_8.into(),
&Mat::default(),
i32::MAX,
Point::default(),
)?;
5. 保存结果
最后将处理后的图像保存到指定路径:
imgcodecs::imwrite(destination_path, &img, &Vector::new())?;
参数调优建议
-
Canny阈值:100和200是常用起始值,可根据具体图像调整
- 高阈值太低会导致过多噪声
- 高阈值太高会丢失重要边缘
-
轮廓检测模式:
- RETR_EXTERNAL:仅最外层轮廓
- RETR_LIST:所有轮廓无层次结构
- RETR_TREE:完整层次结构
-
轮廓近似方法:
- CHAIN_APPROX_NONE:存储所有轮廓点
- CHAIN_APPROX_SIMPLE:压缩冗余点
性能优化
- 使用并行处理批量处理图像
- 对于大图像,可考虑降采样后再处理
- 合理设置Canny阈值减少后续处理数据量
应用场景
这种技术可用于:
- 图像特征提取
- 物体识别预处理
- 图像分割
- 工业检测中的缺陷识别
通过调整参数和后续处理,可以适应不同场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
189
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92