移动端深度学习框架Paddle Lite中PP-OCRv4识别精度优化实践
2025-05-31 08:07:09作者:彭桢灵Jeremy
背景介绍
在移动端部署OCR(光学字符识别)系统时,开发者经常会遇到模型在PC端表现良好但在移动端识别效果下降的问题。本文以Paddle Lite框架为例,深入分析PP-OCRv4模型在Android设备上识别精度不足的原因及解决方案。
问题现象
开发者在使用Paddle Lite 2.14-rc版本在vivo X80手机上运行PP-OCRv4模型时,发现识别结果与PC端PaddleOCR库的结果存在明显差异。测试图片中包含中英文混合文本,移动端识别出现了以下问题:
- 中文识别结果不完整("太阳是绕着我们转话"应为"太阳是绕着我们转的话")
- 英文识别完全错误(输出为乱码而非实际英文句子)
- 置信度评分与PC端不一致
技术分析
输入一致性检查
首先需要确认移动端和PC端的输入处理是否一致,包括:
- 图像预处理流程(尺寸缩放、归一化等)
- 词表文件是否匹配模型训练版本
- 配置文件参数是否一致
关键参数差异
经过深入排查,发现移动端demo中rec(识别)模型的输入尺寸参数设置存在问题。原始代码中设置为32,而实际PP-OCRv4模型需要48的输入尺寸。这种参数不匹配会导致:
- 特征提取不充分
- 上下文信息丢失
- 特别是对长文本和英文识别影响显著
解决方案
将识别模型的输入尺寸从32调整为48后,识别效果得到显著改善:
- 中文识别完整率和准确率提升
- 英文识别恢复正常
- 置信度评分与PC端趋于一致
优化建议
在移动端部署OCR模型时,建议开发者:
- 仔细核对模型文档中的输入参数要求
- 保持预处理流程与训练时一致
- 进行充分的交叉验证测试
- 关注模型版本与推理代码的兼容性
- 对中英文混合场景进行专项测试
总结
移动端OCR部署的精度问题往往源于细节参数的配置差异。通过本次PP-OCRv4在Paddle Lite上的实践,我们认识到输入尺寸等关键参数对模型性能的重要影响。正确的参数配置能够使移动端达到与PC端相近的识别效果,为移动应用提供高质量的OCR能力。
登录后查看全文
热门项目推荐
相关项目推荐
暂无数据
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758