FinanceDatabase项目中的行业分类层级解析
行业分类体系概述
在金融数据分析领域,行业分类是组织和管理上市公司数据的重要维度。FinanceDatabase项目采用了多层次的行业分类体系,帮助用户更精确地筛选和分析股票数据。该体系包含四个主要层级:Sector(行业板块)、Industry Group(行业组)、Industry(行业)和Sub-Industry(子行业)。
层级结构详解
-
Sector(行业板块)
这是最顶层的分类,将市场划分为11个主要板块,如金融(Financials)、医疗保健(Health Care)、信息技术(Information Technology)等。每个板块包含多个行业组。 -
Industry Group(行业组)
行业组是对板块的进一步细分。例如,金融板块包含银行(Banks)、多元化金融(Diversified Financials)和保险(Insurance)三个行业组。 -
Industry(行业)
这是更精细的分类层级。以银行业为例,Industry层级下会细分为商业银行(Banks)和储蓄与住房融资(Thrifts & Housing Finance)等具体行业。 -
Sub-Industry(子行业)
这是最细粒度的分类,在某些数据集中会进一步细分行业。
实际应用示例
在使用FinanceDatabase的Equities类时,可以通过不同层级的分类进行筛选:
# 导入库并初始化
import financedatabase as fd
equities = fd.Equities()
# 查看可用的行业组选项
print(equities.options("industry_group"))
# 查看可用的行业选项
print(equities.options("industry"))
# 筛选特定行业的股票
banks = equities.select(industry='Banks', exclude_exchanges=False)
筛选注意事项
-
粒度选择
选择"industry"比"industry_group"会得到更精确的结果。例如,选择"industry='Banks'"只会得到商业银行,而"industry_group='Banks'"会包含商业银行和储蓄机构。 -
全球数据
默认情况下,查询只包含美国交易平台的股票。如需全球数据,需设置exclude_exchanges=False参数。 -
性能考虑
越细粒度的筛选条件,返回的数据量越小,查询速度越快。但同时也可能遗漏相关公司。
行业分类的实际价值
这种层级分类体系在投资分析中具有重要作用:
-
同业比较
可以在相同行业层级内进行公司间的财务指标对比。 -
行业轮动分析
跟踪不同行业板块的表现,识别市场趋势。 -
风险分散
帮助构建跨行业投资组合,降低集中度风险。 -
基本面分析
同一行业的公司通常面临相似的经营环境和财务特征。
总结
FinanceDatabase项目的行业分类体系为金融数据分析提供了灵活而强大的筛选工具。理解Sector、Industry Group和Industry之间的关系,能够帮助分析师更有效地定位目标公司群体。在实际应用中,应根据分析目的选择合适的分类层级,平衡精确性和全面性的需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00