FinanceDatabase项目中的行业分类层级解析
行业分类体系概述
在金融数据分析领域,行业分类是组织和管理上市公司数据的重要维度。FinanceDatabase项目采用了多层次的行业分类体系,帮助用户更精确地筛选和分析股票数据。该体系包含四个主要层级:Sector(行业板块)、Industry Group(行业组)、Industry(行业)和Sub-Industry(子行业)。
层级结构详解
-
Sector(行业板块)
这是最顶层的分类,将市场划分为11个主要板块,如金融(Financials)、医疗保健(Health Care)、信息技术(Information Technology)等。每个板块包含多个行业组。 -
Industry Group(行业组)
行业组是对板块的进一步细分。例如,金融板块包含银行(Banks)、多元化金融(Diversified Financials)和保险(Insurance)三个行业组。 -
Industry(行业)
这是更精细的分类层级。以银行业为例,Industry层级下会细分为商业银行(Banks)和储蓄与住房融资(Thrifts & Housing Finance)等具体行业。 -
Sub-Industry(子行业)
这是最细粒度的分类,在某些数据集中会进一步细分行业。
实际应用示例
在使用FinanceDatabase的Equities类时,可以通过不同层级的分类进行筛选:
# 导入库并初始化
import financedatabase as fd
equities = fd.Equities()
# 查看可用的行业组选项
print(equities.options("industry_group"))
# 查看可用的行业选项
print(equities.options("industry"))
# 筛选特定行业的股票
banks = equities.select(industry='Banks', exclude_exchanges=False)
筛选注意事项
-
粒度选择
选择"industry"比"industry_group"会得到更精确的结果。例如,选择"industry='Banks'"只会得到商业银行,而"industry_group='Banks'"会包含商业银行和储蓄机构。 -
全球数据
默认情况下,查询只包含美国交易平台的股票。如需全球数据,需设置exclude_exchanges=False
参数。 -
性能考虑
越细粒度的筛选条件,返回的数据量越小,查询速度越快。但同时也可能遗漏相关公司。
行业分类的实际价值
这种层级分类体系在投资分析中具有重要作用:
-
同业比较
可以在相同行业层级内进行公司间的财务指标对比。 -
行业轮动分析
跟踪不同行业板块的表现,识别市场趋势。 -
风险分散
帮助构建跨行业投资组合,降低集中度风险。 -
基本面分析
同一行业的公司通常面临相似的经营环境和财务特征。
总结
FinanceDatabase项目的行业分类体系为金融数据分析提供了灵活而强大的筛选工具。理解Sector、Industry Group和Industry之间的关系,能够帮助分析师更有效地定位目标公司群体。在实际应用中,应根据分析目的选择合适的分类层级,平衡精确性和全面性的需求。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0230PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。01- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









