FinanceDatabase项目中的行业分类层级解析
行业分类体系概述
在金融数据分析领域,行业分类是组织和管理上市公司数据的重要维度。FinanceDatabase项目采用了多层次的行业分类体系,帮助用户更精确地筛选和分析股票数据。该体系包含四个主要层级:Sector(行业板块)、Industry Group(行业组)、Industry(行业)和Sub-Industry(子行业)。
层级结构详解
-
Sector(行业板块)
这是最顶层的分类,将市场划分为11个主要板块,如金融(Financials)、医疗保健(Health Care)、信息技术(Information Technology)等。每个板块包含多个行业组。 -
Industry Group(行业组)
行业组是对板块的进一步细分。例如,金融板块包含银行(Banks)、多元化金融(Diversified Financials)和保险(Insurance)三个行业组。 -
Industry(行业)
这是更精细的分类层级。以银行业为例,Industry层级下会细分为商业银行(Banks)和储蓄与住房融资(Thrifts & Housing Finance)等具体行业。 -
Sub-Industry(子行业)
这是最细粒度的分类,在某些数据集中会进一步细分行业。
实际应用示例
在使用FinanceDatabase的Equities类时,可以通过不同层级的分类进行筛选:
# 导入库并初始化
import financedatabase as fd
equities = fd.Equities()
# 查看可用的行业组选项
print(equities.options("industry_group"))
# 查看可用的行业选项
print(equities.options("industry"))
# 筛选特定行业的股票
banks = equities.select(industry='Banks', exclude_exchanges=False)
筛选注意事项
-
粒度选择
选择"industry"比"industry_group"会得到更精确的结果。例如,选择"industry='Banks'"只会得到商业银行,而"industry_group='Banks'"会包含商业银行和储蓄机构。 -
全球数据
默认情况下,查询只包含美国交易平台的股票。如需全球数据,需设置exclude_exchanges=False参数。 -
性能考虑
越细粒度的筛选条件,返回的数据量越小,查询速度越快。但同时也可能遗漏相关公司。
行业分类的实际价值
这种层级分类体系在投资分析中具有重要作用:
-
同业比较
可以在相同行业层级内进行公司间的财务指标对比。 -
行业轮动分析
跟踪不同行业板块的表现,识别市场趋势。 -
风险分散
帮助构建跨行业投资组合,降低集中度风险。 -
基本面分析
同一行业的公司通常面临相似的经营环境和财务特征。
总结
FinanceDatabase项目的行业分类体系为金融数据分析提供了灵活而强大的筛选工具。理解Sector、Industry Group和Industry之间的关系,能够帮助分析师更有效地定位目标公司群体。在实际应用中,应根据分析目的选择合适的分类层级,平衡精确性和全面性的需求。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00