探索与保护:使用log4j-detect检测CVE-2021-44228问题
在信息安全的世界里,每一处微小的疏忽都可能造成重大的损失。近年来,Java的Log4j库被发现存在严重的安全问题(CVE-2021-44228),引发了全球范围内的关注。为此,我们引荐一个强大的开源工具——log4j-detect,它是一个简单但高效的Python脚本,用于检测URL列表中是否存在这个重要的安全问题。
项目介绍
log4j-detect 是一个由Python 3编写的智能检测脚本,专门针对CVE-2021-44228问题进行扫描。它通过发送带有特定测试参数的GET请求,利用多线程提高性能,来检查目标URL是否存在潜在风险。一旦有响应返回,该脚本将通过识别响应中的特定标识符来确认问题的存在。
项目技术分析
log4j-detect.py 利用了HTTP请求的多个头字段(如 "User-Agent"、"Referer" 和 "X-Forwarded-For" 等)和一个测试参数来检测潜在的问题。当目标系统对含有特定payload的请求做出响应时,它会通过DNS请求到Burp Collaborator或interactsh。如果目标主机存在风险,会在响应的子域前缀上反映出payload的标识,从而揭示其状态。
请注意,这个脚本仅限于检测DNS级别的问题,并不尝试执行远程命令。
项目及技术应用场景
对于拥有大量Web服务的企业、网络安全团队或者个人开发者来说,log4j-detect 都是一个不可或缺的工具。你可以用它来快速扫描你的网络资产,找出那些可能受Log4j问题影响的服务器和应用,以便及时采取修补措施,防止数据泄露或被恶意控制。
项目特点
- 高效检测:采用多线程技术,使得大规模扫描变得更加迅速。
- 简单操作:只需提供一个URL文件和协作器payload,即可运行脚本,无需深入理解问题详情。
- 明确反馈:通过标识号区分响应,可以清晰定位到哪些URL存在风险。
- 聚焦基础验证:专注于DNS级别的问题检测,避免了不必要的风险。
要获取并运行 log4j-detect 脚本,请按照以下步骤操作:
wget https://github.com/takito1812/log4j-detect/raw/main/log4j-detect.py
python3 log4j-detect.py <urlFile> <collaboratorPayload>

在这个数字化的时代,保障安全是我们共同的责任。让 log4j-detect 成为你应对Log4j问题的强大工具,为你的网络环境筑起坚实的防护屏障。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00