探索与保护:使用log4j-detect检测CVE-2021-44228问题
在信息安全的世界里,每一处微小的疏忽都可能造成重大的损失。近年来,Java的Log4j库被发现存在严重的安全问题(CVE-2021-44228),引发了全球范围内的关注。为此,我们引荐一个强大的开源工具——log4j-detect,它是一个简单但高效的Python脚本,用于检测URL列表中是否存在这个重要的安全问题。
项目介绍
log4j-detect 是一个由Python 3编写的智能检测脚本,专门针对CVE-2021-44228问题进行扫描。它通过发送带有特定测试参数的GET请求,利用多线程提高性能,来检查目标URL是否存在潜在风险。一旦有响应返回,该脚本将通过识别响应中的特定标识符来确认问题的存在。
项目技术分析
log4j-detect.py 利用了HTTP请求的多个头字段(如 "User-Agent"、"Referer" 和 "X-Forwarded-For" 等)和一个测试参数来检测潜在的问题。当目标系统对含有特定payload的请求做出响应时,它会通过DNS请求到Burp Collaborator或interactsh。如果目标主机存在风险,会在响应的子域前缀上反映出payload的标识,从而揭示其状态。
请注意,这个脚本仅限于检测DNS级别的问题,并不尝试执行远程命令。
项目及技术应用场景
对于拥有大量Web服务的企业、网络安全团队或者个人开发者来说,log4j-detect 都是一个不可或缺的工具。你可以用它来快速扫描你的网络资产,找出那些可能受Log4j问题影响的服务器和应用,以便及时采取修补措施,防止数据泄露或被恶意控制。
项目特点
- 高效检测:采用多线程技术,使得大规模扫描变得更加迅速。
- 简单操作:只需提供一个URL文件和协作器payload,即可运行脚本,无需深入理解问题详情。
- 明确反馈:通过标识号区分响应,可以清晰定位到哪些URL存在风险。
- 聚焦基础验证:专注于DNS级别的问题检测,避免了不必要的风险。
要获取并运行 log4j-detect 脚本,请按照以下步骤操作:
wget https://github.com/takito1812/log4j-detect/raw/main/log4j-detect.py
python3 log4j-detect.py <urlFile> <collaboratorPayload>

在这个数字化的时代,保障安全是我们共同的责任。让 log4j-detect 成为你应对Log4j问题的强大工具,为你的网络环境筑起坚实的防护屏障。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00