探索与保护:使用log4j-detect检测CVE-2021-44228问题
在信息安全的世界里,每一处微小的疏忽都可能造成重大的损失。近年来,Java的Log4j库被发现存在严重的安全问题(CVE-2021-44228),引发了全球范围内的关注。为此,我们引荐一个强大的开源工具——log4j-detect
,它是一个简单但高效的Python脚本,用于检测URL列表中是否存在这个重要的安全问题。
项目介绍
log4j-detect
是一个由Python 3编写的智能检测脚本,专门针对CVE-2021-44228问题进行扫描。它通过发送带有特定测试参数的GET请求,利用多线程提高性能,来检查目标URL是否存在潜在风险。一旦有响应返回,该脚本将通过识别响应中的特定标识符来确认问题的存在。
项目技术分析
log4j-detect.py
利用了HTTP请求的多个头字段(如 "User-Agent"、"Referer" 和 "X-Forwarded-For" 等)和一个测试参数来检测潜在的问题。当目标系统对含有特定payload的请求做出响应时,它会通过DNS请求到Burp Collaborator或interactsh。如果目标主机存在风险,会在响应的子域前缀上反映出payload的标识,从而揭示其状态。
请注意,这个脚本仅限于检测DNS级别的问题,并不尝试执行远程命令。
项目及技术应用场景
对于拥有大量Web服务的企业、网络安全团队或者个人开发者来说,log4j-detect
都是一个不可或缺的工具。你可以用它来快速扫描你的网络资产,找出那些可能受Log4j问题影响的服务器和应用,以便及时采取修补措施,防止数据泄露或被恶意控制。
项目特点
- 高效检测:采用多线程技术,使得大规模扫描变得更加迅速。
- 简单操作:只需提供一个URL文件和协作器payload,即可运行脚本,无需深入理解问题详情。
- 明确反馈:通过标识号区分响应,可以清晰定位到哪些URL存在风险。
- 聚焦基础验证:专注于DNS级别的问题检测,避免了不必要的风险。
要获取并运行 log4j-detect
脚本,请按照以下步骤操作:
wget https://github.com/takito1812/log4j-detect/raw/main/log4j-detect.py
python3 log4j-detect.py <urlFile> <collaboratorPayload>
在这个数字化的时代,保障安全是我们共同的责任。让 log4j-detect
成为你应对Log4j问题的强大工具,为你的网络环境筑起坚实的防护屏障。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









