dplyr中替代do()函数的最佳实践
2025-06-10 13:32:24作者:毕习沙Eudora
背景介绍
在dplyr包的发展过程中,do()
函数曾经是分组操作的重要工具,但随着包版本的更新迭代,do()
函数逐渐被标记为过时(deprecated)。本文探讨在最新版dplyr中如何优雅地替代do()
函数的功能,特别是在需要访问分组变量信息的情况下。
问题场景
考虑一个典型的数据处理场景:我们需要按某个变量分组后,对每个分组应用一个自定义函数,该函数需要访问分组变量信息,最终将所有结果合并为一个数据框。
传统上,我们可以使用do()
函数轻松实现:
iris |>
group_by(Species) |>
do(fun(.))
但随着do()
函数被弃用,我们需要寻找现代替代方案。
现有替代方案分析
1. purrr::map方法
使用purrr::map
结合split
和bind_rows
可以实现类似功能,但会丢失分组变量信息:
purrr::map(
split(iris, ~Species),
fun
) |>
dplyr::bind_rows()
这种方法的主要缺点是分组变量信息不会自动保留在结果中。
2. nest_by方法
nest_by
可以创建嵌套数据框,但嵌套后的数据无法直接访问分组变量:
iris |>
nest_by(Species) |>
mutate(data = list(fun(data)))
这种方法会触发警告,因为函数内部无法识别分组变量。
3. group_modify方法
group_modify
是最接近do()
的替代方案,但目前仍标记为实验性功能:
iris |>
group_by(Species) |>
group_modify(~ fun(.x))
虽然功能完善,但不建议在生产环境中使用实验性功能。
推荐解决方案
reframe + cur_group组合
目前最稳定且推荐的替代方案是使用reframe
结合cur_group
和pick
:
fun <- function(data, group) {
if (group$Species == "setosa") {
tail(data, n = 3) |> select(Petal.Length)
} else {
head(data, n = 3) |> select(Petal.Length)
}
}
iris |>
reframe(.by = Species, {
fun(pick(everything()), cur_group())
})
这种方法的关键点:
reframe
替代了do
的分组操作功能pick(everything())
选择当前分组的所有数据cur_group()
提供当前分组的信息- 函数需要调整为接受数据和分组信息两个参数
其他变通方案
如果无法修改原函数,可以考虑以下方法:
- 重复分组变量:在嵌套前复制分组变量
iris |>
mutate(Species2 = Species) |>
nest_by(Species2) |>
mutate(fn = list(fun(data))) |>
unnest(fn)
- 修改函数返回值:让函数返回包含分组变量的结果
fun3 <- function(x) {
if (any(x$Species == "setosa")) {
tail(x, n = 3) |> select(Species, Petal.Length)
} else {
head(x, n = 3) |> select(Species, Petal.Length)
}
}
最佳实践建议
- 对于新代码,推荐使用
reframe
+cur_group
组合 - 如果必须保持原函数不变,考虑复制分组变量或修改函数返回值
- 避免在生产代码中使用实验性功能如
group_modify
- 考虑将复杂的分组操作重构为更模块化的函数,便于维护
总结
dplyr生态正在向更明确、更安全的分组操作范式演进。虽然从do()
迁移需要一些调整,但新的方法提供了更好的类型安全性和代码清晰度。理解reframe
、pick
和cur_group
等新功能的组合使用,可以帮助开发者顺利过渡到dplyr的现代工作流程。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
288