GLM-4项目中LoRA微调结果的调用方法详解
2025-06-03 12:44:22作者:范靓好Udolf
前言
在大型语言模型的应用中,LoRA(Low-Rank Adaptation)是一种高效的微调技术,它通过低秩矩阵分解来调整模型参数,大大减少了微调所需的计算资源。本文将详细介绍如何在GLM-4项目中调用LoRA微调结果,帮助开发者快速掌握这一关键技术。
LoRA微调的基本概念
LoRA技术通过在预训练模型的某些层中插入低秩矩阵,来实现对模型行为的调整。相比全参数微调,LoRA具有以下优势:
- 显著减少训练参数数量
 - 降低显存消耗
 - 保持预训练模型权重不变
 - 便于多个微调版本的切换使用
 
GLM-4中调用LoRA微调结果的实现方法
1. 修改openai_api_server.py文件
在GLM-4项目的basic_demo/openai_api_server.py文件中,我们需要对生成接口进行适当修改以支持LoRA调用。
关键修改点
首先需要在生成请求中添加LoRA请求参数:
lora_request = LoRARequest(
    lora_name="自定义LoRA名称",
    lora_int_id=1,  # 任意整数ID
    lora_local_path="/LoRA/微调结果的/本地路径",
)
然后在生成调用时传入这个参数:
async for output in engine.generate(
    inputs=inputs,
    sampling_params=sampling_params,
    request_id=f"{time.time()}",
    lora_request=lora_request
):
2. 启用LoRA支持
在初始化引擎时,需要确保启用了LoRA支持:
engine = AsyncLLMEngine.from_engine_args(
    engine_args,
    enable_lora=True,  # 关键参数
)
实际应用中的注意事项
- 
路径设置:确保
lora_local_path指向正确的LoRA微调结果目录,该目录应包含LoRA适配器权重文件。 - 
ID管理:当需要同时加载多个LoRA适配器时,应为每个适配器分配唯一的
lora_int_id。 - 
性能考虑:虽然LoRA减少了内存占用,但加载多个适配器仍会增加计算开销,需根据实际硬件条件合理使用。
 - 
版本兼容:确保LoRA微调使用的模型版本与当前运行的GLM-4版本兼容。
 
进阶使用技巧
- 
动态切换:可以通过修改
lora_request参数实现不同微调版本间的动态切换,适用于多场景应用。 - 
组合使用:在某些情况下,可以同时加载多个LoRA适配器,实现不同微调特性的组合效果。
 - 
性能监控:建议在调用LoRA时添加性能监控代码,观察其对推理速度的影响。
 
总结
在GLM-4项目中调用LoRA微调结果是一个简单但功能强大的技术,通过本文介绍的方法,开发者可以轻松实现模型行为的定制化调整。掌握这一技术将大大扩展GLM-4模型的应用场景,使其能够更好地适应特定领域或任务的需求。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444