GLM-4项目中LoRA微调结果的调用方法详解
2025-06-03 00:50:18作者:范靓好Udolf
前言
在大型语言模型的应用中,LoRA(Low-Rank Adaptation)是一种高效的微调技术,它通过低秩矩阵分解来调整模型参数,大大减少了微调所需的计算资源。本文将详细介绍如何在GLM-4项目中调用LoRA微调结果,帮助开发者快速掌握这一关键技术。
LoRA微调的基本概念
LoRA技术通过在预训练模型的某些层中插入低秩矩阵,来实现对模型行为的调整。相比全参数微调,LoRA具有以下优势:
- 显著减少训练参数数量
- 降低显存消耗
- 保持预训练模型权重不变
- 便于多个微调版本的切换使用
GLM-4中调用LoRA微调结果的实现方法
1. 修改openai_api_server.py文件
在GLM-4项目的basic_demo/openai_api_server.py
文件中,我们需要对生成接口进行适当修改以支持LoRA调用。
关键修改点
首先需要在生成请求中添加LoRA请求参数:
lora_request = LoRARequest(
lora_name="自定义LoRA名称",
lora_int_id=1, # 任意整数ID
lora_local_path="/LoRA/微调结果的/本地路径",
)
然后在生成调用时传入这个参数:
async for output in engine.generate(
inputs=inputs,
sampling_params=sampling_params,
request_id=f"{time.time()}",
lora_request=lora_request
):
2. 启用LoRA支持
在初始化引擎时,需要确保启用了LoRA支持:
engine = AsyncLLMEngine.from_engine_args(
engine_args,
enable_lora=True, # 关键参数
)
实际应用中的注意事项
-
路径设置:确保
lora_local_path
指向正确的LoRA微调结果目录,该目录应包含LoRA适配器权重文件。 -
ID管理:当需要同时加载多个LoRA适配器时,应为每个适配器分配唯一的
lora_int_id
。 -
性能考虑:虽然LoRA减少了内存占用,但加载多个适配器仍会增加计算开销,需根据实际硬件条件合理使用。
-
版本兼容:确保LoRA微调使用的模型版本与当前运行的GLM-4版本兼容。
进阶使用技巧
-
动态切换:可以通过修改
lora_request
参数实现不同微调版本间的动态切换,适用于多场景应用。 -
组合使用:在某些情况下,可以同时加载多个LoRA适配器,实现不同微调特性的组合效果。
-
性能监控:建议在调用LoRA时添加性能监控代码,观察其对推理速度的影响。
总结
在GLM-4项目中调用LoRA微调结果是一个简单但功能强大的技术,通过本文介绍的方法,开发者可以轻松实现模型行为的定制化调整。掌握这一技术将大大扩展GLM-4模型的应用场景,使其能够更好地适应特定领域或任务的需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K