Keras3 1.4.0版本发布:全面增强张量操作与模型构建能力
Keras是一个广受欢迎的高级神经网络API,它能够运行在TensorFlow、JAX或PyTorch等后端之上。Keras3作为Keras的最新版本,提供了更加灵活和强大的深度学习模型构建能力。最新发布的1.4.0版本带来了多项重要更新和改进,特别是在张量操作和模型构建方面有显著增强。
张量操作的重大改进
全新的子集操作功能
1.4.0版本引入了op_subset()函数和x@r[...]语法,使得开发者能够使用R语言的[语义和惯用法来进行张量子集操作。这一改进让熟悉R语言的用户能够以更加自然的方式处理张量数据。
同时,新版本还实现了张量的子集赋值功能,包括op_subset(x, ...) <- value和x@r[...] <- value两种形式。这些功能大大简化了张量数据的修改操作。
索引行为的统一调整
为了与R语言的习惯保持一致,所有以op_为前缀的操作现在默认返回1-based索引。这一变化影响了多个函数的行为,包括:
op_argmax()和op_argmin():返回最大值和最小值的索引op_top_k():返回前k个元素的索引op_argsort():返回排序后的索引op_nonzero():返回非零元素的索引- 以及其他多个涉及索引返回的函数
新增张量操作函数
1.4.0版本新增了多个实用的张量操作函数:
op_rot90():实现张量的90度旋转op_rearrange():提供Einops风格的张量重排op_signbit():判断数值的符号位op_polar():将笛卡尔坐标转换为极坐标op_image_perspective_transform():图像透视变换op_image_gaussian_blur():图像高斯模糊处理
这些新函数极大地丰富了Keras3的图像处理和数学运算能力。
模型构建与训练的增强
新增层类型
1.4.0版本引入了多种新的神经网络层,为模型构建提供了更多选择:
layer_rms_normalization():RMS归一化层layer_aug_mix()和layer_cut_mix():数据增强层layer_random_invert()和layer_random_erasing():随机图像处理层layer_random_gaussian_blur()和layer_random_perspective():随机图像变换层
这些新层特别适合计算机视觉任务,能够有效提升模型的泛化能力。
现有层的功能增强
layer_resizing()层新增了antialias参数,可以在调整图像大小时启用抗锯齿功能,提高图像质量。layer$pop_layer()方法新增了rebuild参数,并会返回被移除的层,使得模型结构调整更加灵活。
输入与模型构建改进
keras_input()、keras_model_sequential()和op_convert_to_tensor()函数现在都支持ragged参数,可以更好地处理不规则张量数据。新增的rematerialized_call()方法为层对象提供了更多控制权。
实用工具与辅助功能
预测与预处理简化
application_decode_predictions()函数现在默认返回处理后的数据框,如果缺少预测结果则返回解码器函数。application_preprocess_inputs()函数在缺少输入时会返回预处理器函数。这些改进使得模型预测流程更加简洁。
张量转换与索引
新增的op_convert_to_array()函数可以方便地将张量转换为R数组。同时引入了x@py[...]访问器,支持Python风格的0-based索引,为不同背景的开发者提供了更多选择。
配置管理
Keras3现在会自动将KERAS_HOME设置为tools::R_user_dir("keras3", "cache"),前提是~/.keras不存在且KERAS_HOME未设置。这一改进简化了配置管理,提高了用户体验。
性能优化与问题修复
1.4.0版本修复了多个已知问题,包括:
op_shape()函数在某些情况下返回TensorFlowTensorShape的问题metric_iou()、op_top_k()和op_eye()函数处理R原子双精度数时的问题
这些修复提高了框架的稳定性和可靠性。
总结
Keras3 1.4.0版本带来了大量实用功能和改进,特别是在张量操作、模型构建和图像处理方面有显著增强。新引入的子集操作、索引行为调整以及多种新层类型,使得深度学习模型的开发和实验更加便捷高效。这些改进不仅提升了框架的功能性,也优化了用户体验,使Keras3成为R语言生态中更加强大的深度学习工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00