Qiskit项目中MCMTGate的QPY序列化问题分析与解决方案
问题背景
在量子计算框架Qiskit中,QPY是一种用于序列化和反序列化量子电路的二进制格式。近期发现,当尝试使用QPY格式保存包含MCMTGate(多控制多目标门)的量子电路时,会出现反序列化失败的问题。
问题分析
MCMTGate是Qiskit电路库中的一个重要门操作,它实现了对多个控制位和目标位的门操作。该门的构造函数需要三个关键参数:
- 基础门(gate)
- 控制量子位数(num_ctrl_qubits)
- 目标量子位数(num_target_qubits)
当前QPY序列化机制在处理MCMTGate时存在两个主要缺陷:
-
参数缺失问题:现有的CIRCUIT_INSTRUCTION和CIRCUIT_INSTRUCTION_V2两种指令格式没有包含基础门(gate)的信息存储能力。
-
参数推导不足:虽然可以通过总量子位数减去控制量子位数得到目标量子位数,但基础门的信息无法从现有序列化数据中恢复。
技术细节
在Qiskit的QPY实现中,不同类型的门操作有不同的序列化处理方式:
-
标准门操作:通过CIRCUIT_INSTRUCTION或CIRCUIT_INSTRUCTION_V2格式处理,存储基本参数和属性。
-
特殊门操作:如QFTGate等有专门的序列化处理逻辑。
-
参数化门操作:如GraphStateGate将其参数作为params属性存储。
MCMTGate的特殊性在于它不仅需要存储控制位数量等常规参数,还需要完整保存基础门的信息,这使得它无法直接套用现有的任何一种序列化模式。
解决方案
针对这一问题,可以采取以下两种解决方案:
-
独立处理模式:参考PauliEvolutionGate的处理方式,为MCMTGate实现专门的序列化和反序列化逻辑。这需要:
- 在_write_instruction中添加对MCMTGate的特殊处理
- 在_read_instruction中实现对应的解析逻辑
- 完整保存基础门的信息和所有必要参数
-
扩展指令格式:创建CIRCUIT_INSTRUCTION_V3格式,增加对复杂门操作参数的支持。这种方案更具扩展性,能够为未来可能出现类似复杂度的门操作提供支持。
实现建议
从工程实现角度考虑,独立处理模式更为简单直接,适合快速解决问题。具体实现步骤应包括:
- 在序列化时完整保存MCMTGate的基础门信息
- 在反序列化时重建基础门对象
- 正确处理控制位和目标位数的关系
- 确保与其他门操作的序列化兼容性
总结
Qiskit的QPY序列化机制在处理复杂门操作时需要考虑更多参数和上下文信息。MCMTGate的序列化问题揭示了现有架构在处理这类门操作时的局限性。通过为特殊门操作实现定制化的序列化逻辑,可以保持框架的灵活性和扩展性,同时确保所有门操作都能正确保存和加载。
这一问题的解决不仅能够修复当前MCMTGate的序列化缺陷,也为未来处理类似复杂度的门操作提供了参考方案,有助于提升Qiskit框架的健壮性和可用性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00