Qiskit项目中MCMTGate的QPY序列化问题分析与解决方案
问题背景
在量子计算框架Qiskit中,QPY是一种用于序列化和反序列化量子电路的二进制格式。近期发现,当尝试使用QPY格式保存包含MCMTGate(多控制多目标门)的量子电路时,会出现反序列化失败的问题。
问题分析
MCMTGate是Qiskit电路库中的一个重要门操作,它实现了对多个控制位和目标位的门操作。该门的构造函数需要三个关键参数:
- 基础门(gate)
- 控制量子位数(num_ctrl_qubits)
- 目标量子位数(num_target_qubits)
当前QPY序列化机制在处理MCMTGate时存在两个主要缺陷:
-
参数缺失问题:现有的CIRCUIT_INSTRUCTION和CIRCUIT_INSTRUCTION_V2两种指令格式没有包含基础门(gate)的信息存储能力。
-
参数推导不足:虽然可以通过总量子位数减去控制量子位数得到目标量子位数,但基础门的信息无法从现有序列化数据中恢复。
技术细节
在Qiskit的QPY实现中,不同类型的门操作有不同的序列化处理方式:
-
标准门操作:通过CIRCUIT_INSTRUCTION或CIRCUIT_INSTRUCTION_V2格式处理,存储基本参数和属性。
-
特殊门操作:如QFTGate等有专门的序列化处理逻辑。
-
参数化门操作:如GraphStateGate将其参数作为params属性存储。
MCMTGate的特殊性在于它不仅需要存储控制位数量等常规参数,还需要完整保存基础门的信息,这使得它无法直接套用现有的任何一种序列化模式。
解决方案
针对这一问题,可以采取以下两种解决方案:
-
独立处理模式:参考PauliEvolutionGate的处理方式,为MCMTGate实现专门的序列化和反序列化逻辑。这需要:
- 在_write_instruction中添加对MCMTGate的特殊处理
- 在_read_instruction中实现对应的解析逻辑
- 完整保存基础门的信息和所有必要参数
-
扩展指令格式:创建CIRCUIT_INSTRUCTION_V3格式,增加对复杂门操作参数的支持。这种方案更具扩展性,能够为未来可能出现类似复杂度的门操作提供支持。
实现建议
从工程实现角度考虑,独立处理模式更为简单直接,适合快速解决问题。具体实现步骤应包括:
- 在序列化时完整保存MCMTGate的基础门信息
- 在反序列化时重建基础门对象
- 正确处理控制位和目标位数的关系
- 确保与其他门操作的序列化兼容性
总结
Qiskit的QPY序列化机制在处理复杂门操作时需要考虑更多参数和上下文信息。MCMTGate的序列化问题揭示了现有架构在处理这类门操作时的局限性。通过为特殊门操作实现定制化的序列化逻辑,可以保持框架的灵活性和扩展性,同时确保所有门操作都能正确保存和加载。
这一问题的解决不仅能够修复当前MCMTGate的序列化缺陷,也为未来处理类似复杂度的门操作提供了参考方案,有助于提升Qiskit框架的健壮性和可用性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00