Apache Yunikorn 核心框架使用指南
项目介绍
Apache Yunikorn 是一个开源的资源调度框架,专为云原生环境设计,旨在提供灵活且高效的作业和服务调度能力。它支持 Kubernetes 集群上的多种工作负载,包括批处理任务、在线服务以及机器学习等。Yunikorn 核心框架确保了在复杂多变的分布式环境中,应用程序能够高效运行,并易于管理。
项目快速启动
要快速体验 Apache Yunikorn,你需要先准备一个 Kubernetes 集群。以下是基本的安装步骤:
准备 Kubernetes 集群
确保你有一个可用的 Kubernetes 集群。如果没有,可以使用 Minikube 或者其它云服务商提供的 Kubernetes 服务来创建一个。
安装 Yunikorn
通过以下命令下载并部署 Yunikorn 到你的 Kubernetes 集群中:
kubectl apply -f https://github.com/apache/yunikorn-core/releases/download/v<version>/yunikorn-k8s-cluster.yaml
请将 <version> 替换为最新或指定版本号。
启动示例应用
Yunikorn 提供了一个简单的示例作业来帮助快速了解如何提交任务。首先,创建一个 YAML 文件(如 job.yaml):
apiVersion: k8s.yunikorn.apache.org/v1alpha1
kind: Application
metadata:
name: hello-world
spec:
task:
appMasterReplicaCount: 1
driver:
container:
image: "hello-world"
然后,使用以下命令提交该作业:
kubectl apply -f job.yaml
通过 kubectl get pods 命令可监控作业状态。
应用案例和最佳实践
Apache Yunikorn 被广泛应用于大规模的数据处理、微服务架构、以及AI训练场景中。最佳实践中,推荐采用细粒度的任务划分和合理的资源预留策略,以达到高资源利用率和低延迟响应。例如,在大数据处理场景下,通过设置动态调整的资源分配,Yunikorn 可以优化 Spark 或 Flink 等框架的工作负载。
典型生态项目
Yunikorn 不仅作为一个独立的调度器存在,还与众多开源生态系统紧密集成,比如 Apache Hadoop、Apache Spark、Apache Flink。这些集成使得在大数据处理和分析领域,Yunikorn 成为了提升集群效率的关键组件。开发者可以通过配置 Yunikorn 来优化这些生态项目的工作流,实现更智能的资源管理和作业调度。
本指南提供了基础的入门信息,深入学习与应用请参考 Apache Yunikorn 的官方文档及社区贡献的更多案例。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00