Apache Yunikorn 核心框架使用指南
项目介绍
Apache Yunikorn 是一个开源的资源调度框架,专为云原生环境设计,旨在提供灵活且高效的作业和服务调度能力。它支持 Kubernetes 集群上的多种工作负载,包括批处理任务、在线服务以及机器学习等。Yunikorn 核心框架确保了在复杂多变的分布式环境中,应用程序能够高效运行,并易于管理。
项目快速启动
要快速体验 Apache Yunikorn,你需要先准备一个 Kubernetes 集群。以下是基本的安装步骤:
准备 Kubernetes 集群
确保你有一个可用的 Kubernetes 集群。如果没有,可以使用 Minikube 或者其它云服务商提供的 Kubernetes 服务来创建一个。
安装 Yunikorn
通过以下命令下载并部署 Yunikorn 到你的 Kubernetes 集群中:
kubectl apply -f https://github.com/apache/yunikorn-core/releases/download/v<version>/yunikorn-k8s-cluster.yaml
请将 <version> 替换为最新或指定版本号。
启动示例应用
Yunikorn 提供了一个简单的示例作业来帮助快速了解如何提交任务。首先,创建一个 YAML 文件(如 job.yaml):
apiVersion: k8s.yunikorn.apache.org/v1alpha1
kind: Application
metadata:
name: hello-world
spec:
task:
appMasterReplicaCount: 1
driver:
container:
image: "hello-world"
然后,使用以下命令提交该作业:
kubectl apply -f job.yaml
通过 kubectl get pods 命令可监控作业状态。
应用案例和最佳实践
Apache Yunikorn 被广泛应用于大规模的数据处理、微服务架构、以及AI训练场景中。最佳实践中,推荐采用细粒度的任务划分和合理的资源预留策略,以达到高资源利用率和低延迟响应。例如,在大数据处理场景下,通过设置动态调整的资源分配,Yunikorn 可以优化 Spark 或 Flink 等框架的工作负载。
典型生态项目
Yunikorn 不仅作为一个独立的调度器存在,还与众多开源生态系统紧密集成,比如 Apache Hadoop、Apache Spark、Apache Flink。这些集成使得在大数据处理和分析领域,Yunikorn 成为了提升集群效率的关键组件。开发者可以通过配置 Yunikorn 来优化这些生态项目的工作流,实现更智能的资源管理和作业调度。
本指南提供了基础的入门信息,深入学习与应用请参考 Apache Yunikorn 的官方文档及社区贡献的更多案例。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00