YOLOv10训练过程中可视化图像数量与布局调整指南
2025-05-22 09:41:20作者:董宙帆
在YOLOv10模型训练过程中,用户经常需要对训练和验证过程中的可视化结果进行调整。本文将详细介绍如何修改YOLOv10代码以控制输出图像的数量和布局方式。
问题背景
默认情况下,YOLOv10在训练过程中会生成有限数量的可视化图像(通常为3张),并且每张图像会包含多个子图(默认为16个)。这种默认设置可能无法满足所有用户的需求,特别是当需要更详细地监控训练过程或只需要查看单个图像时。
修改可视化图像数量
要增加训练和验证过程中保存的图像数量,需要修改以下两个文件:
- trainer.py:修改
self.plot_idx属性,将其设置为所需数量的索引列表。例如,要生成50张图像:
self.plot_idx = list(range(50))
- validator.py:修改条件判断中的批次限制。例如,要处理前50个批次:
if self.args.plots and batch_i < 50:
self.plot_val_samples(batch, batch_i)
self.plot_predictions(batch, preds, batch_i)
调整图像布局
默认情况下,YOLOv10会将多个图像组合在一张图中显示。要修改为每张图只显示一个图像,需要修改plotting.py文件:
max_subplots = 1 # 将默认值改为1
这一修改会使得每张可视化图像只包含第一个批次的第一个图像。
注意事项
- 修改代码后,必须重新安装项目才能使更改生效:
pip install -e .
-
在某些环境(如Kaggle)中,
pip install -e .命令可能无法正常工作,建议在本地环境中进行这些修改。 -
当设置
max_subplots=1时,系统只会显示每个批次中的第一个图像,这可能不适合所有使用场景,需要根据具体需求进行调整。
总结
通过上述修改,用户可以灵活控制YOLOv10训练过程中生成的可视化图像数量和布局方式。这些调整对于模型调试和结果分析非常有帮助,特别是在需要详细监控训练过程或简化可视化输出的情况下。建议用户根据实际需求选择合适的参数配置,并在修改后确保正确重新安装项目以使更改生效。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19