探秘DOUBLEPULSAR SMB植入体:解密C2流量的Python脚本
作者:Luke Jennings(luke.jennings@countercept.com - @jukelennings) 公司:Countercept (@countercept) 网站:https://countercept.com
在网络安全研究中,对恶意软件通讯的理解至关重要。今天,我们向大家推荐一款由Countercept团队开发的独特工具——一个用于从PCAP文件中解密DOUBLEPULSAR SMB植入体使用的C2(Command & Control)流量的Python脚本。这个脚本利用了简单的4字节异或加密,并且可以从首次非ping包中的SESSION_SETUP参数中直接揭示XOR密钥,从而解密所有流量。
项目介绍
这是一个早期版本的项目,它依赖于网络包中的特定组件来工作,并已针对DLL注入功能进行了测试。理想情况下,应提供只包含单个命令的PCAP文件来获得最佳结果。项目内附有一个用于测试的PCAP文件,该文件是在目标机器上通过DLL注入命令将标准Windows DLL wininet.dll
注入到运行的calc.exe进程中捕获的。解密后的输出也存储在仓库中,包含了4885字节的shellcode和与wininet.dll
逐字节匹配的内容。
技术分析
脚本的核心是基于一个事实,即在初始的非ping包中存在连续四个零字节,这使得我们可以轻松提取出解密所需的XOR密钥。Python-pcapng库是该项目的一个关键依赖,它允许我们处理和解析PCAPNG格式的数据包捕获文件。
使用方法简单,只需安装python-pcapng库并通过命令行调用decrypt_doublepulsar_traffic.py
脚本:
root@kali:~# pip install python-pcapng
root@kali:~# python decrypt_doublepulsar_traffic.py --pcapng inject-dll-wininet-into-calc.pcapng --output decrypted_data.bin
应用场景
对于网络安全研究人员和渗透测试人员来说,这款工具可以帮助他们深入理解DOUBLEPULSAR攻击的方法和手段。它可以用于分析受感染系统的C2通信,揭示潜在的恶意活动,甚至可能帮助研究人员发现新的漏洞和对抗策略。
此外,它还为教育和训练提供了实用案例,让学生和专业人士能够亲自实践如何解析复杂的恶意软件通信。
项目特点
- 简单高效:利用易识别的网络包特征进行解密。
- 针对性强:专注于解密DOUBLEPULSAR SMB植入体的C2流量。
- 可扩展性:虽然目前仅测试于DLL注入功能,但其基本原理可能适用于其他类似加密方式的恶意软件。
- 易于使用:依赖项明确,命令行接口简洁明了。
如果你热衷于网络安全研究,或者希望深入了解DOUBLEPULSAR的运作机制,那么这款工具无疑是一个不可多得的资源。立即尝试并加入我们的行列,探索网络世界的隐蔽角落。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









