Glaze项目中的高效JSON解析与向量预分配技术
2025-07-07 17:20:18作者:伍希望
在现代C++开发中,JSON数据处理已成为日常任务。Glaze作为一个高效的JSON库,提供了多种解析方式。本文将重点探讨如何在使用Glaze解析JSON数据到std::vector时优化内存分配,提升性能。
问题背景
当从JSON数据解析到std::vector时,常见的做法是让vector在解析过程中动态增长。这种方式虽然简单,但可能导致多次内存分配和元素移动,特别是在处理大型数组时性能影响显著。
解决方案
Glaze提供了两种主要方法来优化这一过程:
1. 使用JSON指针路径解析
传统方法使用get_as_json
函数,但我们可以通过分解步骤来实现预分配:
std::vector<int> vec;
vec.reserve(100); // 预先分配足够空间
const auto str = glz::get_view_json<"/obj/list">(buffer);
if (str) {
auto ec = glz::read_json(vec, *str);
// 错误处理...
}
这种方法虽然需要更多样板代码,但允许我们在解析前精确控制内存分配。
2. 使用JMESPath查询
Glaze还支持更高效的JMESPath查询方式:
std::vector<int> vec{};
vec.reserve(100); // 预先分配
auto ec = glz::read_jmespath<"obj.list">(vec, buffer);
JMESPath相比JSON Pointer有更好的优化空间,通常能提供更高的解析效率。
自定义类型处理
对于自定义类型,我们可以通过特化glz::meta来实现类似优化:
template <>
struct glz::meta<custom_buffer_input> {
static constexpr auto read_x = [](custom_buffer_input& s,
std::vector<std::array<std::string_view, 2>> input) {
input.reserve(100); // 在自定义解析函数中预分配
// 解析逻辑...
};
static constexpr auto value = glz::object("str", glz::custom<read_x, nullptr>);
};
性能考量
预分配策略的选择应考虑:
- 数据规模 - 对于已知或可预测大小的数据效果最佳
- 内存使用 - 避免过度预分配导致内存浪费
- 解析频率 - 高频解析场景收益更明显
结论
通过合理使用Glaze提供的解析接口和预分配技术,开发者可以显著提升JSON数据处理性能,特别是在处理大型数组时。选择JSON Pointer还是JMESPath取决于具体场景和性能需求,而自定义类型的处理则提供了更大的灵活性。
登录后查看全文
热门项目推荐
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0254Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
149
238

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
751
474

openGauss kernel ~ openGauss is an open source relational database management system
C++
110
171

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
85
15

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
121
254

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
102
42

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
374
361

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
111
76

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.03 K
0

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
713
98