Glaze项目中的高效JSON解析与向量预分配技术
2025-07-07 11:38:52作者:伍希望
在现代C++开发中,JSON数据处理已成为日常任务。Glaze作为一个高效的JSON库,提供了多种解析方式。本文将重点探讨如何在使用Glaze解析JSON数据到std::vector时优化内存分配,提升性能。
问题背景
当从JSON数据解析到std::vector时,常见的做法是让vector在解析过程中动态增长。这种方式虽然简单,但可能导致多次内存分配和元素移动,特别是在处理大型数组时性能影响显著。
解决方案
Glaze提供了两种主要方法来优化这一过程:
1. 使用JSON指针路径解析
传统方法使用get_as_json函数,但我们可以通过分解步骤来实现预分配:
std::vector<int> vec;
vec.reserve(100); // 预先分配足够空间
const auto str = glz::get_view_json<"/obj/list">(buffer);
if (str) {
auto ec = glz::read_json(vec, *str);
// 错误处理...
}
这种方法虽然需要更多样板代码,但允许我们在解析前精确控制内存分配。
2. 使用JMESPath查询
Glaze还支持更高效的JMESPath查询方式:
std::vector<int> vec{};
vec.reserve(100); // 预先分配
auto ec = glz::read_jmespath<"obj.list">(vec, buffer);
JMESPath相比JSON Pointer有更好的优化空间,通常能提供更高的解析效率。
自定义类型处理
对于自定义类型,我们可以通过特化glz::meta来实现类似优化:
template <>
struct glz::meta<custom_buffer_input> {
static constexpr auto read_x = [](custom_buffer_input& s,
std::vector<std::array<std::string_view, 2>> input) {
input.reserve(100); // 在自定义解析函数中预分配
// 解析逻辑...
};
static constexpr auto value = glz::object("str", glz::custom<read_x, nullptr>);
};
性能考量
预分配策略的选择应考虑:
- 数据规模 - 对于已知或可预测大小的数据效果最佳
- 内存使用 - 避免过度预分配导致内存浪费
- 解析频率 - 高频解析场景收益更明显
结论
通过合理使用Glaze提供的解析接口和预分配技术,开发者可以显著提升JSON数据处理性能,特别是在处理大型数组时。选择JSON Pointer还是JMESPath取决于具体场景和性能需求,而自定义类型的处理则提供了更大的灵活性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178