Glaze项目中的高效JSON解析与向量预分配技术
2025-07-07 07:00:36作者:伍希望
在现代C++开发中,JSON数据处理已成为日常任务。Glaze作为一个高效的JSON库,提供了多种解析方式。本文将重点探讨如何在使用Glaze解析JSON数据到std::vector时优化内存分配,提升性能。
问题背景
当从JSON数据解析到std::vector时,常见的做法是让vector在解析过程中动态增长。这种方式虽然简单,但可能导致多次内存分配和元素移动,特别是在处理大型数组时性能影响显著。
解决方案
Glaze提供了两种主要方法来优化这一过程:
1. 使用JSON指针路径解析
传统方法使用get_as_json函数,但我们可以通过分解步骤来实现预分配:
std::vector<int> vec;
vec.reserve(100); // 预先分配足够空间
const auto str = glz::get_view_json<"/obj/list">(buffer);
if (str) {
auto ec = glz::read_json(vec, *str);
// 错误处理...
}
这种方法虽然需要更多样板代码,但允许我们在解析前精确控制内存分配。
2. 使用JMESPath查询
Glaze还支持更高效的JMESPath查询方式:
std::vector<int> vec{};
vec.reserve(100); // 预先分配
auto ec = glz::read_jmespath<"obj.list">(vec, buffer);
JMESPath相比JSON Pointer有更好的优化空间,通常能提供更高的解析效率。
自定义类型处理
对于自定义类型,我们可以通过特化glz::meta来实现类似优化:
template <>
struct glz::meta<custom_buffer_input> {
static constexpr auto read_x = [](custom_buffer_input& s,
std::vector<std::array<std::string_view, 2>> input) {
input.reserve(100); // 在自定义解析函数中预分配
// 解析逻辑...
};
static constexpr auto value = glz::object("str", glz::custom<read_x, nullptr>);
};
性能考量
预分配策略的选择应考虑:
- 数据规模 - 对于已知或可预测大小的数据效果最佳
- 内存使用 - 避免过度预分配导致内存浪费
- 解析频率 - 高频解析场景收益更明显
结论
通过合理使用Glaze提供的解析接口和预分配技术,开发者可以显著提升JSON数据处理性能,特别是在处理大型数组时。选择JSON Pointer还是JMESPath取决于具体场景和性能需求,而自定义类型的处理则提供了更大的灵活性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146