使用gargle包在Google Compute Engine上管理认证令牌
2025-06-07 21:43:08作者:柯茵沙
概述
本文将介绍如何在Google Compute Engine(GCE)虚拟机上使用r-lib/gargle包进行认证管理。gargle是一个专门为R语言设计的Google API认证工具包,它简化了与Google服务交互时的认证流程。
准备工作
环境配置
在使用gargle与GCE交互前,需要完成以下准备工作:
- 拥有一个已启用计费的Google Cloud Platform(GCP)项目
- 下载GCP项目的默认服务账户JSON凭证文件
- 在.Renviron文件中配置环境变量:
GCE_AUTH_FILE="凭证文件路径.json" GCE_DEFAULT_PROJECT_ID="项目ID" GCE_DEFAULT_ZONE="区域(如us-west1-a)"
相关R包
我们将使用googleComputeEngineR包来管理GCE虚拟机,它提供了与GCE交互的R接口。
library(googleComputeEngineR)
创建GCE虚拟机
基本创建方法
创建带有RStudio Server的虚拟机:
vm <- gce_vm(
template = "rstudio",
name = "虚拟机名称",
username = "用户名",
password = "密码",
predefined_type = "e2-standard-4"
)
参数说明:
template: 指定虚拟机模板,这里使用RStudio模板name: 虚拟机名称username/password: RStudio登录凭证predefined_type: 虚拟机规格,e2-standard-4是中等配置
获取虚拟机信息
创建后,可以通过以下命令获取虚拟机IP地址:
paste0("http://", gce_get_external_ip(vm))
虚拟机认证机制
默认认证范围
默认情况下,虚拟机使用"cloud-platform"范围的服务账户权限:
gce_instance_service_accounts()
这会显示虚拟机可用的服务账户及其权限范围。
令牌获取
在虚拟机内使用gargle获取令牌:
library(gargle)
local_gargle_verbosity("debug") # 启用详细日志
t <- token_fetch()
权限范围管理
默认范围的限制
默认的"cloud-platform"范围可能不足以访问特定服务(如Google Drive):
t <- token_fetch(c(
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/drive"
))
如果虚拟机创建时未包含Drive范围,相关API调用会失败。
创建带特定范围的虚拟机
创建时明确指定所需权限范围:
vm <- gce_vm(
template = "rstudio",
name = "带drive权限的虚拟机",
serviceAccounts = list(
list(
email = "服务账户邮箱",
scopes = c(
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/drive"
)
)
)
)
虚拟机生命周期管理
暂停与恢复
gce_vm_suspend("虚拟机名称") # 暂停
gce_vm_resume("虚拟机名称") # 恢复
停止虚拟机
完全停止虚拟机以避免产生费用:
gce_vm_stop("虚拟机名称")
查看虚拟机状态
gce_list_instances()
实际应用示例
使用Google Drive API
在配置了Drive范围的虚拟机上:
library(googledrive)
drive_find() # 列出Drive文件
drive_user() # 显示当前用户信息
最佳实践
- 根据实际需求最小化权限范围
- 不使用时暂停或停止虚拟机以节省费用
- 使用描述性名称便于管理多个虚拟机
- 定期检查并清理不再需要的虚拟机
总结
通过gargle包和googleComputeEngineR的配合,R用户可以在GCE环境中高效地管理认证流程和虚拟机资源。理解权限范围的概念对于成功使用Google API至关重要,本文介绍的方法可以帮助用户根据具体需求配置适当的访问权限。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26