Typesense 1.8.0版本中的关联查询功能解析
2025-05-09 20:21:25作者:郦嵘贵Just
概述
Typesense作为一款开源的搜索引擎,在1.8.0版本中引入了强大的关联查询(Joins)功能,这使得开发者能够像传统关系型数据库那样执行表连接操作。本文将深入探讨Typesense中关联查询的实现方式、使用场景以及最佳实践。
关联查询基础
Typesense的关联查询功能允许在不同集合(相当于数据库表)之间建立关系。最常见的是一对多关系,例如在餐厅(restaurants)和菜品(dishes)的场景中,一个餐厅可以拥有多个菜品。
基本查询语法
要查询特定餐厅的所有菜品,可以使用以下两种方式:
- 直接通过外键查询:
filter_by: `restaurant_id:"${restaurantId}"`
- 通过关联查询语法:
filter_by: `$restaurants(id:="${restaurantId}")`
关联查询的实现
集合定义
要实现关联查询,首先需要在集合定义中明确指定字段间的引用关系。例如,在菜品集合中定义restaurant_id字段时,需要指定它引用餐厅集合的id字段:
{
"name": "restaurant_id",
"type": "string",
"reference": "restaurants.id"
}
多表关联
Typesense支持更复杂的多表关联场景。例如,在餐厅-菜品-标签的三表关系中:
- 餐厅(restaurants)和菜品(dishes)是一对多关系
- 菜品(dishes)和标签(tags)通过中间表dish_tags建立多对多关系
这种场景下的查询示例如下:
filter_by: `$restaurants(id:=restaurant_a) && $dish_tags($tags(id: [tag_a, tag_c]))`
嵌套关联与字段控制
Typesense提供了强大的嵌套关联查询能力,并允许精细控制返回的字段:
包含特定字段
include_fields: `$dish_tags($tags(name, rating))`
排除特定字段
exclude_fields: `$dish_tags(id, dish_id, $tags(id))`
字段合并策略
还可以指定字段的合并策略:
include_fields: `$dish_tags($tags(name, rating, strategy: merge), strategy:nest_array)`
性能考量与最佳实践
- 索引设计:确保关联字段都建立了适当的索引
- 查询优化:尽量使用直接外键查询替代关联查询,除非确实需要跨表过滤
- 字段选择:只包含必要的字段,避免返回过多数据
- 版本兼容:关联查询功能需要Typesense 0.26.0及以上版本
实际应用案例
假设我们需要查询某家餐厅的特定类型菜品,并同时获取餐厅信息和菜品标签:
{
q: "*",
filter_by: `$restaurants(id:="${restaurantId}") && $dish_tags($tags(id: [${tagIds}]))`,
include_fields: `$restaurants(name, rating), $dish_tags($tags(name))`,
page: 1,
per_page: 10
}
这个查询会:
- 找出指定餐厅的所有菜品
- 进一步筛选出带有特定标签的菜品
- 返回菜品基本信息、餐厅名称和评分,以及相关标签名称
总结
Typesense 1.8.0引入的关联查询功能极大地扩展了其应用场景,使得这个搜索引擎能够处理更复杂的数据关系。通过合理设计集合结构和查询语句,开发者可以实现从简单到复杂的各种关联查询需求。随着后续版本的发布,这一功能还将继续增强,为开发者提供更强大的数据查询能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147