YOLOv5模型TFLite转换后类别分数归一化问题解析
2025-05-01 05:02:20作者:裴锟轩Denise
在将YOLOv5模型转换为TFLite格式后,开发者经常会遇到一个典型问题:模型输出的类别分数(class scores)总和不为1。这种现象看似异常,实则反映了深度学习模型输出处理中的一个重要技术细节。
问题本质分析
YOLOv5模型的原始输出并非直接给出概率值,而是未经归一化的"原始分数"(logits)。这些分数需要通过softmax函数进行转换才能得到概率分布。具体来说:
- 模型输出结构通常为[xywh, conf, class0, class1,...],其中xywh表示边界框坐标,conf是置信度,后面是各类别的原始分数
- 这些类别分数在没有经过softmax处理前,其总和没有数学约束条件,可以大于1也可以小于1
- 只有经过softmax转换后,才能保证所有类别概率之和为1
解决方案实现
正确的处理流程应该包含以下步骤:
- 提取类别分数:从模型输出中分离出类别分数部分
- 应用softmax:对这些分数进行归一化处理
- 计算最终置信度:将归一化后的类别最大值与检测框置信度相乘
以下是一个典型的Java实现示例:
// 对每个检测框进行处理
for (int i = 0; i < output_box; ++i) {
// 提取类别分数
float[] classes = new float[10];
for (int c = 0; c < 10; ++c) {
classes[c] = out[0][i][5 + c];
}
// 应用softmax归一化
classes = softmax(classes);
// 回写归一化后的分数
for (int c = 0; c < 10; ++c) {
out[0][i][5 + c] = classes[c];
}
}
Softmax函数实现要点
一个数值稳定的softmax实现应当包含以下关键步骤:
- 最大值减法:防止指数运算时数值溢出
- 指数运算:将分数转换为正数
- 归一化:确保输出总和为1
public static float[] softmax(float[] scores) {
float maxScore = Float.NEGATIVE_INFINITY;
for (float score : scores) {
if (score > maxScore) maxScore = score;
}
float[] expScores = new float[scores.length];
float sumExpScores = 0;
for (int i = 0; i < scores.length; i++) {
expScores[i] = (float) Math.exp(scores[i] - maxScore);
sumExpScores += expScores[i];
}
float[] probabilities = new float[scores.length];
for (int i = 0; i < scores.length; i++) {
probabilities[i] = expScores[i] / sumExpScores;
}
return probabilities;
}
置信度处理建议
对于置信度(confidence score)较低的问题,开发者需要注意:
- 置信度表示的是"存在目标"的概率,与类别概率是独立的概念
- 低置信度可能反映模型训练不足或数据质量不佳
- 实际应用中可适当调整置信度阈值,平衡召回率和准确率
通过正确理解YOLOv5模型的输出结构并实施适当的后处理,开发者可以确保模型在移动端部署时获得预期的检测效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137