首页
/ Langchain-ChatGLM项目中Xinference平台工具调用问题的分析与解决

Langchain-ChatGLM项目中Xinference平台工具调用问题的分析与解决

2025-05-04 20:40:25作者:胡唯隽

在Langchain-ChatGLM项目0.3.1版本中,开发者发现了一个与Xinference平台相关的工具调用问题。当用户选择不添加任何工具(即工具参数为None)时,使用多功能对话功能会出现报错,而使用工具(如本地知识库工具)或RAG对话功能则表现正常。

问题现象

在Xinference平台上,当工具参数设置为None时,系统会抛出pydantic验证错误,提示"extra fields not permitted"。具体错误信息显示,问题出在CreateCompletion的tool_choice参数上。值得注意的是,这个问题在Ollama平台上并不存在,且之前的0.3.0版本中也未出现此问题。

技术分析

经过深入分析,发现问题根源在于OpenAI API的参数验证机制。当tool_choice参数为None时,Xinference平台的pydantic验证器会将其视为额外字段而拒绝接受。这与OpenAI API的预期行为不符,因为根据API规范,tool_choice参数应该是可选的。

对比不同环境下的表现差异:

  • Xinference平台:pydantic-core 2.16.3 + openai 1.35.12
  • ChatChat环境:pydantic 2.7.4 + pydantic-core 2.18.4 + openai 1.35.14

版本差异表明,这可能是一个特定版本组合下的兼容性问题。

解决方案

针对这个问题,开发者提出了一个优雅的解决方案:在调用client.chat.completions.create方法时,采用条件参数传递的方式。具体实现如下:

  1. 首先构建基础参数字典,包含messages、model、stream等必要参数
  2. 只有当tool_choice不为None时,才将其添加到参数字典中
  3. 使用字典解包方式调用API方法

这种处理方式既解决了参数验证问题,又保持了代码的清晰性和可维护性。同时,它也遵循了Python的最佳实践——"显式优于隐式",明确地处理了可选参数的情况。

经验总结

这个案例为我们提供了几个重要的技术启示:

  1. API参数验证在不同平台实现可能存在差异,需要特别注意可选参数的处理
  2. 条件参数传递是一种鲁棒性更强的API调用方式
  3. 版本兼容性问题在集成不同技术栈时需要特别关注
  4. 错误处理应该考虑到各种边界条件,包括参数为None的情况

对于使用Langchain-ChatGLM的开发者和用户来说,理解这类问题的解决思路有助于更好地使用和维护基于大语言模型的应用程序。同时,这也提醒我们在集成不同技术组件时,需要进行充分的跨平台测试。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8