QwenLM/Qwen项目在Tesla P40显卡上的部署问题分析
2025-05-12 21:18:11作者:曹令琨Iris
问题背景
在使用QwenLM/Qwen项目中的qwen-14B-chat-int8/4模型进行vllm模式部署时,遇到了CUDA内核执行错误。具体表现为运行时出现"no kernel image is available for execution on the device"的错误提示,导致模型无法正常加载和运行。
错误现象分析
当尝试在Tesla P40显卡上部署qwen-14B-chat-int4模型时,系统日志显示以下关键错误信息:
- 初始化阶段警告量化方法尚未完全优化,速度可能比非量化模型慢
- 使用较慢的tokenizer警告
- 核心错误:CUDA执行时没有可用的内核镜像
- 错误发生在量化矩阵乘法运算阶段
值得注意的是,当显存占用达到约9GB时即出现错误,排除了显存不足的可能性。同时测试表明,相同的环境可以成功部署其他模型如LLaMA和ChatGLM(非vllm模式)。
技术原因探究
经过深入分析,发现该问题的根本原因在于vLLM框架对GPU架构的支持限制:
- Tesla P40基于Pascal架构(计算能力6.1),而现代深度学习框架越来越倾向于支持更新的架构
- vLLM框架明确要求GPU计算能力至少为7.0(Volta架构)或更高
- 量化实现依赖特定的CUDA内核,这些内核没有为Pascal架构编译
- 虽然PyTorch 2.1可以在P40上运行基本操作,但vLLM的高性能优化内核需要更新的架构支持
解决方案建议
针对这一技术限制,可以考虑以下几种解决方案:
- 更换硬件:使用计算能力7.0及以上的GPU,如Tesla V100、T4、A100等
- 使用非vLLM部署方式:Qwen模型支持多种部署方式,可尝试使用transformers直接加载
- 降低量化精度:尝试使用非量化或不同量化版本的模型
- 软件降级:尝试使用较旧版本的vLLM,但可能无法完全解决问题
经验总结
这一案例揭示了深度学习部署中硬件兼容性的重要性。在实际生产环境中,需要特别注意:
- 框架对GPU架构的硬性要求
- 量化模型可能引入额外的硬件依赖
- 不同部署方式(vllm/非vllm)的技术差异
- 错误信息的准确解读能力
对于使用较旧GPU架构的用户,建议在项目初期就验证框架和模型的兼容性,避免后期出现难以解决的问题。同时,随着AI模型的快速发展,适度更新硬件基础设施也是保证项目顺利推进的重要条件。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0137AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.33 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
79

暂无简介
Dart
536
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
63

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650