从dev-notes项目学习朴素贝叶斯分类算法原理与实践
2025-06-19 16:13:40作者:舒璇辛Bertina
朴素贝叶斯(Naive Bayes)是一种经典的机器学习分类算法,属于监督学习范畴。本文将通过dev-notes项目中的水果分类案例,深入浅出地讲解朴素贝叶斯的工作原理、数学推导和实际应用。
朴素贝叶斯算法概述
朴素贝叶斯是基于贝叶斯定理的概率分类器,其"朴素"体现在假设所有特征之间相互独立。尽管这一假设在现实中往往不成立,但朴素贝叶斯仍表现出色,尤其在文本分类领域。
水果分类案例解析
假设我们有以下水果数据集:
- 总样本数:100个水果(60个香蕉,40个苹果)
- 特征维度:
- 长度(Long/Not Long)
- 颜色(Yellow/Not Yellow)
- 软硬度(Soft/Not Soft)
数据分布如下表所示:
| 类型 | Long | Not Long | Soft | Not Soft | Yellow | Not Yellow | 总计 |
|---|---|---|---|---|---|---|---|
| 香蕉 | 20 | 0 | 25 | 5 | 5 | 5 | 60 |
| 苹果 | 0 | 30 | 5 | 5 | 0 | 0 | 40 |
| 总计 | 20 | 30 | 30 | 10 | 5 | 5 | 100 |
1. 先验概率计算
先验概率表示在没有任何特征信息时,某类别出现的概率:
P(香蕉) = 60/100 = 0.6
P(苹果) = 40/100 = 0.4
2. 特征概率计算
各特征在总体中的出现概率:
P(Long) = 20/100 = 0.2
P(Soft) = 30/100 = 0.3
P(Yellow) = 5/100 = 0.05
3. 条件概率计算
在已知类别下,某特征出现的概率:
P(Long|香蕉) = 20/60 ≈ 0.333
P(Soft|香蕉) = 25/60 ≈ 0.417
P(Yellow|香蕉) = 5/60 ≈ 0.083
P(Long|苹果) = 0/40 = 0
P(Soft|苹果) = 5/40 = 0.125
P(Yellow|苹果) = 0/40 = 0
新样本分类实践
现在有一个新水果,其特征为:Long(长)、Yellow(黄色)、Soft(软)。我们需要判断它是香蕉还是苹果。
香蕉的后验概率计算
根据贝叶斯定理:
P(香蕉|Long,Yellow,Soft) =
[P(Long|香蕉) * P(Yellow|香蕉) * P(Soft|香蕉) * P(香蕉)] /
[P(Long) * P(Yellow) * P(Soft)]
= (0.333 * 0.083 * 0.417 * 0.6) / (0.2 * 0.05 * 0.3)
≈ 0.0069 / 0.003
≈ 2.3
苹果的后验概率计算
P(苹果|Long,Yellow,Soft) =
[P(Long|苹果) * P(Yellow|苹果) * P(Soft|苹果) * P(苹果)] /
[P(Long) * P(Yellow) * P(Soft)]
= (0 * 0 * 0.125 * 0.4) / (0.2 * 0.05 * 0.3)
= 0
分类结果
比较两个后验概率:
- 香蕉:≈2.3
- 苹果:0
因此,我们判定这个长、黄、软的水果更有可能是香蕉。
算法优势与局限性
优势
- 计算效率高,适合大规模数据集
- 对小规模数据表现良好
- 对无关特征具有鲁棒性
- 在文本分类(如垃圾邮件识别)中表现优异
局限性
- 特征独立性假设在实际中往往不成立
- 对输入数据分布敏感
- 需要足够数据来估计概率
实际应用建议
- 文本分类:朴素贝叶斯是垃圾邮件过滤、情感分析的经典算法
- 推荐系统:可用于初步的用户兴趣分类
- 医学诊断:基于症状预测疾病类型
- 特征选择:使用卡方检验等选择最相关特征可提升性能
总结
通过dev-notes项目中的水果分类案例,我们深入理解了朴素贝叶斯的工作原理。虽然其假设简单,但在许多实际应用中表现优异,特别是文本分类领域。理解这一算法不仅有助于掌握机器学习基础,也为学习更复杂的模型奠定了基础。
对于初学者,建议从简单的数据集(如鸢尾花数据集)开始实践,逐步理解概率计算过程和分类决策原理。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134