如何在CVAT中配置服务器IP地址实现局域网共享访问
2025-05-16 21:53:43作者:毕习沙Eudora
背景介绍
CVAT(Computer Vision Annotation Tool)是一个开源的计算机视觉标注工具,广泛应用于机器学习数据标注领域。默认情况下,CVAT安装后会绑定到localhost(127.0.0.1)地址,这意味着只能在安装CVAT的机器上访问。但在实际团队协作中,我们经常需要让局域网内的其他成员也能访问CVAT服务进行协同标注工作。
解决方案
要让CVAT服务在局域网内可访问,需要修改CVAT的配置使其绑定到服务器的实际IP地址而非仅本地回环地址。以下是具体实现方法:
方法一:通过环境变量配置
-
首先确定服务器的局域网IP地址
- 在Linux/macOS上使用
ifconfig命令 - 在Windows上使用
ipconfig命令
- 在Linux/macOS上使用
-
修改CVAT的docker-compose配置文件 在docker-compose.yml所在目录中,创建或修改.env文件,添加以下配置:
CVAT_HOST=你的服务器IP地址 -
重启CVAT服务
docker-compose down docker-compose up -d
方法二:直接修改docker-compose.yml
- 打开docker-compose.yml文件
- 找到cvat服务定义部分
- 在environment部分添加或修改:
environment: CVAT_HOST: 你的服务器IP地址 - 保存并重启服务
注意事项
- 防火墙设置:确保服务器的防火墙允许8080端口的入站连接
- 安全性考虑:仅在可信局域网内开放访问,如需外网访问应考虑添加认证机制
- 端口冲突:如果8080端口被占用,可通过修改CVAT_PORT环境变量更换端口
- 服务重启:配置变更后必须重启CVAT容器才能生效
验证配置
配置完成后,可以在局域网内其他机器上通过浏览器访问:
http://服务器IP地址:8080
如果能正常显示CVAT登录界面,说明配置成功。
高级配置
对于生产环境,还可以考虑以下增强配置:
- 使用Nginx反向代理
- 配置HTTPS加密
- 设置域名访问
- 添加用户认证系统
这些配置可以进一步提升CVAT的安全性和可用性,适合企业级部署场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1