BoundaryML BAML 项目中的输出格式控制技术解析
2025-06-25 23:18:04作者:余洋婵Anita
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
在大型语言模型(LLM)应用开发中,如何有效地控制模型输出格式是一个关键问题。BoundaryML BAML 项目提供了一种优雅的解决方案,特别是通过 ctx.output_format 指令来实现对输出结构的精确控制。
输出格式控制的基本原理
BAML 的核心功能之一是允许开发者定义严格的输出结构。通过类(class)定义和联合类型(union types),开发者可以精确指定LLM应该返回的数据格式。例如:
class 天气信息 {
城市 string?
邮编 int?
}
class 提醒事项 {
内容 string
日期 string? @description("ISO日期格式")
}
function 处理请求(输入: string) -> 天气信息 | 提醒事项 {
client GPT模型
prompt #"
处理输入: {{ 输入 }}
{{ ctx.output_format }}
"#
}
输出格式的两种呈现方式
BAML 默认会将类结构内联显示在提示词中,这对于简单结构很有效。但随着类复杂度增加,这种方式会导致提示词过于冗长。例如默认输出可能如下:
请使用以下任一JSON格式响应:
{
城市: string
邮编: int
}
或
{
内容: string
日期: string
}
高级格式控制:类提升(hoisting)技术
BAML 0.89.0版本引入了类提升功能,通过 hoist_classes 参数控制类的呈现方式。这个功能可以将类定义"提升"到提示词顶部,使主指令更加简洁清晰。
使用方法
- 提升所有类:
{{ ctx.output_format(hoist_classes=true) }}
- 选择性提升特定类:
{{ ctx.output_format(hoist_classes=["天气信息","提醒事项"]) }}
提升后的输出格式示例:
定义:
天气信息 {
城市: string
邮编: int
}
提醒事项 {
内容: string
日期: string
}
请使用以下任一格式响应:
天气信息
或
提醒事项
技术实现考量
类提升功能在以下场景特别有用:
- 处理复杂数据结构时保持提示词整洁
- 当多个类有相似字段结构时,避免混淆
- 需要强调类型区别而非具体字段时
值得注意的是,某些LLM可能不直接输出类名而只输出字段。为确保正确解析,建议为每个类添加唯一的action字段作为标识符。
最佳实践建议
- 对于简单结构(少于3个字段),可以使用默认内联格式
- 对于复杂结构或联合类型,推荐使用类提升功能
- 当类之间存在字段名冲突时,必须使用
action字段或类提升来明确区分 - 结合类描述(
@@description)使用提升功能可以进一步提高模型理解
通过合理运用BAML的输出格式控制功能,开发者可以创建更加清晰、高效的LLM交互提示,同时确保返回数据的结构符合预期。
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
279
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
107
136
暂无简介
Dart
570
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
294
39