BoundaryML BAML 项目中的输出格式控制技术解析
2025-06-25 00:39:01作者:余洋婵Anita
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
在大型语言模型(LLM)应用开发中,如何有效地控制模型输出格式是一个关键问题。BoundaryML BAML 项目提供了一种优雅的解决方案,特别是通过 ctx.output_format 指令来实现对输出结构的精确控制。
输出格式控制的基本原理
BAML 的核心功能之一是允许开发者定义严格的输出结构。通过类(class)定义和联合类型(union types),开发者可以精确指定LLM应该返回的数据格式。例如:
class 天气信息 {
城市 string?
邮编 int?
}
class 提醒事项 {
内容 string
日期 string? @description("ISO日期格式")
}
function 处理请求(输入: string) -> 天气信息 | 提醒事项 {
client GPT模型
prompt #"
处理输入: {{ 输入 }}
{{ ctx.output_format }}
"#
}
输出格式的两种呈现方式
BAML 默认会将类结构内联显示在提示词中,这对于简单结构很有效。但随着类复杂度增加,这种方式会导致提示词过于冗长。例如默认输出可能如下:
请使用以下任一JSON格式响应:
{
城市: string
邮编: int
}
或
{
内容: string
日期: string
}
高级格式控制:类提升(hoisting)技术
BAML 0.89.0版本引入了类提升功能,通过 hoist_classes 参数控制类的呈现方式。这个功能可以将类定义"提升"到提示词顶部,使主指令更加简洁清晰。
使用方法
- 提升所有类:
{{ ctx.output_format(hoist_classes=true) }}
- 选择性提升特定类:
{{ ctx.output_format(hoist_classes=["天气信息","提醒事项"]) }}
提升后的输出格式示例:
定义:
天气信息 {
城市: string
邮编: int
}
提醒事项 {
内容: string
日期: string
}
请使用以下任一格式响应:
天气信息
或
提醒事项
技术实现考量
类提升功能在以下场景特别有用:
- 处理复杂数据结构时保持提示词整洁
- 当多个类有相似字段结构时,避免混淆
- 需要强调类型区别而非具体字段时
值得注意的是,某些LLM可能不直接输出类名而只输出字段。为确保正确解析,建议为每个类添加唯一的action字段作为标识符。
最佳实践建议
- 对于简单结构(少于3个字段),可以使用默认内联格式
- 对于复杂结构或联合类型,推荐使用类提升功能
- 当类之间存在字段名冲突时,必须使用
action字段或类提升来明确区分 - 结合类描述(
@@description)使用提升功能可以进一步提高模型理解
通过合理运用BAML的输出格式控制功能,开发者可以创建更加清晰、高效的LLM交互提示,同时确保返回数据的结构符合预期。
baml
A programming language to build strongly-typed LLM functions. Testing and observability included
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1