Sloth项目核心概念解析:图像与视频标注基础
2025-06-11 07:38:26作者:柏廷章Berta
引言
Sloth是一个专注于图像和视频标注的开源工具,它为计算机视觉和机器学习领域的研究人员提供了一个灵活、可扩展的标注解决方案。本文将深入解析Sloth的核心概念,帮助用户理解其设计哲学和工作原理。
标注基础概念
标签的本质
在Sloth中,每个图像或视频帧可以包含任意数量的标签。这些标签本质上是一组键值对(key-value pairs),采用类似JSON的结构表示。例如:
{
"class": "rect",
"id": "Martin",
"x": 10,
"y": 30,
"width": 40,
"height": 50,
}
关键特性:
- 唯一必需的键是"class",它决定了标签的类型和可视化方式
- 其他键值对用于存储标注的具体属性和元数据
- 这种结构提供了极大的灵活性,可以适应各种标注需求
标准标注类型
Sloth内置支持多种常见的几何标注类型,每种类型都有特定的键值约定:
1. 点标注(Point)
{
"class": "point",
"x": 10,
"y": 20,
}
用于标记图像中的特定点位置,如人脸关键点、物体中心点等。
2. 矩形标注(Rect)
{
"class": "rect",
"x": 10,
"y": 20,
"width": 20,
"height": 20,
}
最常见的标注类型,用于物体检测任务,标记物体的边界框。
3. 多边形标注(Polygon)
{
"class": "polygon",
"xn": "10;20;30",
"yn": "20;30;40",
}
用于更精确的物体轮廓标注,xn和yn分别表示各顶点的x、y坐标,用分号分隔。
自定义标注类型
Sloth的强大之处在于它支持完全自定义的标注类型,这使其能够适应各种特殊标注需求。
扩展标准类型
可以在标准类型基础上添加额外属性:
{
"class": "point",
"type": "left_eye",
"x": 50, "y": 40,
}
这种扩展方式常用于需要区分同类但不同子类型的标注场景,如人脸关键点标注。
创建全新类型
Sloth允许定义全新的标注类型,不受限于几何形状:
{
"class": "triangle",
"x1": 10, "y1": 20,
"x2": 30, "y2": 20,
"x3": 20, "y3": 30,
},
{
"class": "deathstar",
"x": 678, "y": 890, "z": 666,
"range": "very far",
"message": "What happens if I press *this* button?"
}
自定义类型要点:
- 类名可以任意指定,不限于几何形状
- 可以包含任何类型的属性和元数据
- 需要自定义可视化方式(通过配置文件实现)
数据存储与表示分离
Sloth采用了一个重要的设计理念:标注的表示(representation)与存储(storage)分离。
核心概念
- 内存表示:程序运行时采用统一的键值对结构
- 存储格式:可以灵活选择,不影响程序逻辑
支持格式
Sloth默认支持多种存储格式:
- JSON:与内存表示高度一致,易于读写
- YAML:人类可读性更好
- 其他:可通过扩展支持XML、二进制等格式
扩展优势
这种分离设计带来了显著优势:
- 兼容现有数据集,无需转换格式
- 可以开发自定义的导入/导出逻辑
- 支持直接与数据库或Web服务交互
- 保持核心逻辑与存储细节解耦
实际应用建议
新手使用指南
- 从标准标注类型开始,熟悉基本工作流程
- 逐步尝试添加自定义属性
- 最后探索完全自定义的标注类型
性能考虑
- 对于大型数据集,考虑使用二进制格式提高IO效率
- 复杂标注类型可能影响渲染性能,需合理设计
最佳实践
- 保持标注结构一致
- 为自定义类型添加详细文档
- 考虑向前兼容性
总结
Sloth通过灵活的键值对结构和表示-存储分离的设计,提供了一个强大而开放的标注框架。无论是简单的矩形标注还是复杂的自定义标注需求,Sloth都能提供良好的支持。理解这些核心概念后,用户可以更高效地利用Sloth完成各种图像和视频标注任务,并为特定需求定制自己的标注解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135