PaddleClas多标签分类模型训练中的显存泄漏问题分析与解决
2025-06-06 03:48:14作者:伍希望
问题背景
在使用PaddleClas进行多标签分类模型训练时,部分用户遇到了显存泄漏问题。具体表现为在训练CLIP_vit_base_patch16_448_ML模型时,每个epoch都会导致显存持续增长,最终导致训练过程因显存不足而中断。
问题现象
用户在使用PaddleX 3.0-beta1版本训练多标签分类模型时观察到以下现象:
- 显存使用量随着训练epoch的增加而持续增长
- 即使关闭了评估(eval)过程,仅进行训练也会出现显存泄漏
- 大约10个epoch后显存就会被耗尽,导致训练过程中断
环境配置
出现问题的典型环境配置包括:
- 操作系统:Windows 10 LTSC 2019
- Python版本:3.10
- CUDA版本:11.8
- GPU型号:NVIDIA RTX 4090
- PaddlePaddle版本:3.0-beta1
- PaddleClas通过PaddleX插件安装
问题原因分析
经过PaddlePaddle开发团队确认,这个问题是由于PaddlePaddle框架3.0-beta1版本中存在的一个已知缺陷导致的。在训练过程中,某些临时变量没有被正确释放,导致显存无法被回收利用。
解决方案
该问题已在PaddlePaddle 3.0.0b2版本中得到修复。用户可以通过以下步骤解决问题:
- 升级PaddlePaddle到3.0.0b2版本
- 使用新的版本重新训练模型
升级命令如下:
python -m pip install paddlepaddle-gpu==3.0.0b2
验证结果
用户反馈在升级到3.0.0b2版本后:
- 显存占用保持稳定,不再出现持续增长的情况
- 模型训练过程可以正常完成
- 显存使用效率显著提高
最佳实践建议
为了避免类似问题,建议用户:
- 始终使用PaddlePaddle的最新稳定版本
- 在开始大规模训练前,先进行小规模测试验证显存使用情况
- 定期检查框架的更新日志,了解已知问题和修复情况
- 对于显存敏感的任务,可以考虑使用梯度累积等技术来降低显存需求
总结
显存泄漏是深度学习训练中常见的问题之一,可能导致训练过程中断或效率降低。PaddlePaddle团队持续优化框架的内存管理机制,用户通过及时更新到最新版本可以获得更好的训练体验和性能表现。对于多标签分类任务,特别是使用大型视觉模型如CLIP时,确保使用稳定的框架版本尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
321
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
Ascend Extension for PyTorch
Python
157
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
640
249
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
244
86
暂无简介
Dart
608
136
React Native鸿蒙化仓库
JavaScript
239
311
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.03 K