PaddleClas多标签分类模型训练中的显存泄漏问题分析与解决
2025-06-06 23:39:51作者:伍希望
问题背景
在使用PaddleClas进行多标签分类模型训练时,部分用户遇到了显存泄漏问题。具体表现为在训练CLIP_vit_base_patch16_448_ML模型时,每个epoch都会导致显存持续增长,最终导致训练过程因显存不足而中断。
问题现象
用户在使用PaddleX 3.0-beta1版本训练多标签分类模型时观察到以下现象:
- 显存使用量随着训练epoch的增加而持续增长
- 即使关闭了评估(eval)过程,仅进行训练也会出现显存泄漏
- 大约10个epoch后显存就会被耗尽,导致训练过程中断
环境配置
出现问题的典型环境配置包括:
- 操作系统:Windows 10 LTSC 2019
- Python版本:3.10
- CUDA版本:11.8
- GPU型号:NVIDIA RTX 4090
- PaddlePaddle版本:3.0-beta1
- PaddleClas通过PaddleX插件安装
问题原因分析
经过PaddlePaddle开发团队确认,这个问题是由于PaddlePaddle框架3.0-beta1版本中存在的一个已知缺陷导致的。在训练过程中,某些临时变量没有被正确释放,导致显存无法被回收利用。
解决方案
该问题已在PaddlePaddle 3.0.0b2版本中得到修复。用户可以通过以下步骤解决问题:
- 升级PaddlePaddle到3.0.0b2版本
- 使用新的版本重新训练模型
升级命令如下:
python -m pip install paddlepaddle-gpu==3.0.0b2
验证结果
用户反馈在升级到3.0.0b2版本后:
- 显存占用保持稳定,不再出现持续增长的情况
- 模型训练过程可以正常完成
- 显存使用效率显著提高
最佳实践建议
为了避免类似问题,建议用户:
- 始终使用PaddlePaddle的最新稳定版本
- 在开始大规模训练前,先进行小规模测试验证显存使用情况
- 定期检查框架的更新日志,了解已知问题和修复情况
- 对于显存敏感的任务,可以考虑使用梯度累积等技术来降低显存需求
总结
显存泄漏是深度学习训练中常见的问题之一,可能导致训练过程中断或效率降低。PaddlePaddle团队持续优化框架的内存管理机制,用户通过及时更新到最新版本可以获得更好的训练体验和性能表现。对于多标签分类任务,特别是使用大型视觉模型如CLIP时,确保使用稳定的框架版本尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19