Jitsu项目在Apple Silicon设备上的Docker构建问题解析
在Jitsu项目的开发过程中,使用Apple Silicon设备(如M1/M2芯片的MacBook)进行Docker镜像构建时,开发者可能会遇到构建过程冻结的问题。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象
当在Apple Silicon设备上执行带有平台参数的构建命令时:
docker buildx build --platform linux/amd64 . -f all.Dockerfile
构建过程会在RUN pnpm build步骤停滞不前,持续时间可能超过20分钟而无任何进展。
根本原因
这一问题源于Apple Silicon芯片(基于ARM架构)与目标平台(linux/amd64)之间的架构差异。Docker在Apple Silicon设备上运行amd64架构容器时,需要通过Rosetta 2进行二进制转译,这种模拟层的性能表现不佳,特别是在处理复杂构建任务时容易导致进程冻结。
解决方案
本地开发环境
对于本地开发环境,最简单的解决方案是移除--platform参数:
docker buildx build . -f all.Dockerfile
这样Docker会构建原生ARM64架构的镜像,避免架构转换带来的性能问题。
生产环境构建
如果需要构建amd64架构的镜像用于生产环境部署,推荐以下两种方案:
-
使用AMD64/Linux云实例:在云服务提供商处获取标准的x86架构Linux实例进行构建,这是目前Jitsu官方CI/CD流程采用的方式。
-
利用Docker Build Cloud:虽然Jitsu项目尚未正式集成这一功能,但技术前瞻性的开发者可以尝试自行配置。
多阶段构建说明
Jitsu的Dockerfile采用多阶段构建技术,可以生成多个镜像。构建目标通过--target参数控制。开发者应参考项目中的pnpm run build-scripts和./release.sh脚本,而非已废弃的./consolebuild.sh。
最佳实践建议
-
Apple Silicon用户在进行本地开发时,优先使用原生ARM64架构镜像以获得最佳性能。
-
生产环境镜像构建建议在目标架构的构建环境中完成,避免跨架构构建带来的兼容性问题。
-
关注项目更新,未来版本可能会集成更完善的跨平台构建解决方案。
通过理解这些技术细节和采取适当的构建策略,开发者可以有效地在Apple Silicon设备上进行Jitsu项目的开发和构建工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00