Kaldi项目安装Intel MKL库常见问题解析
问题背景
在使用Kaldi语音识别工具包时,很多用户会遇到安装Intel数学核心库(MKL)失败的问题。这个问题通常出现在执行Kaldi项目中的install_mkl.sh安装脚本时,系统会提示GPG密钥验证失败,导致无法从Intel的软件仓库安全地下载和安装MKL库。
错误现象
当用户运行安装脚本时,控制台会显示类似以下错误信息:
GPG error: https://apt.repos.intel.com/mkl all InRelease
The following signatures couldn't be verified because the public key is not available: NO_PUBKEY BAC6F0C353D04109
E: The repository 'https://apt.repos.intel.com/mkl all InRelease' is not signed.
这表明系统无法验证Intel软件仓库的签名,因为缺少相应的GPG公钥。这是一个常见的安全机制,防止用户从未经验证的来源安装软件。
问题原因
这个问题主要有两个深层次原因:
-
密钥过期问题:Intel定期会更新其软件仓库的签名密钥,但有时密钥更新不及时,导致旧密钥过期而新密钥尚未部署。
-
系统配置问题:在首次使用Intel软件仓库时,系统没有预先导入Intel的GPG公钥,导致无法验证软件包的完整性。
解决方案
针对这个问题,可以通过以下步骤手动解决:
-
下载Intel的GPG公钥:
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB -
将公钥添加到系统的可信密钥环中:
apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB -
配置Intel MKL的软件源:
sh -c 'echo deb https://apt.repos.intel.com/mkl all main > /etc/apt/sources.list.d/intel-mkl.list' -
更新软件包列表:
apt update -
重新运行Kaldi的MKL安装脚本:
extras/install_mkl.sh
技术细节
这个问题的本质是Linux系统的软件包安全验证机制。在Debian/Ubuntu系统中,apt工具会检查软件仓库的签名,确保软件包来源可信且未被篡改。当缺少对应的GPG公钥时,系统会拒绝从该仓库安装软件,这是一种重要的安全保护措施。
Intel的数学核心库(MKL)是一套高度优化的数学函数库,特别针对Intel处理器进行了优化。Kaldi语音识别工具使用MKL来加速其矩阵运算等数学操作,因此正确安装MKL对Kaldi的性能至关重要。
预防措施
为了避免将来出现类似问题,建议:
-
定期检查Intel软件仓库的状态,特别是在执行系统大版本升级后。
-
对于生产环境,可以考虑将Intel的GPG公钥纳入系统的基础镜像中。
-
关注Intel官方发布的密钥更新公告,及时更新系统配置。
总结
Kaldi项目中安装Intel MKL库时遇到的GPG密钥验证问题是一个常见但容易解决的问题。通过手动添加Intel的GPG公钥并正确配置软件源,用户可以顺利完成MKL的安装。理解Linux系统的软件包验证机制有助于更好地处理类似问题,确保系统安全和软件正常运行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00