OpenCompass中使用VLLM进行模型评估时任务卡顿问题分析与解决方案
问题背景
在使用OpenCompass进行大规模语言模型评估时,许多开发者选择VLLM作为推理后端以获得更高效的推理性能。然而,在实际使用过程中,当评估任务被自动切分为多个子任务时,系统经常会在第一个子任务完成后卡住,无法继续执行后续任务。相比之下,使用HuggingFaceCausalLM后端则不会出现这个问题。
问题现象
当配置文件中使用VLLM作为模型后端时,OpenCompass会将大型评估数据集自动切分为多个子任务。典型的现象是:
- 第一个子任务能够正常完成评估
- 系统输出"Calling ray.init() again after it has already been called"信息
- 评估流程在此处卡住,无法继续执行后续子任务
根本原因分析
经过深入分析,这个问题主要源于Ray框架的初始化机制与VLLM的工作方式:
-
Ray框架单例特性:Ray设计为单例模式,整个进程中只能有一个Ray实例运行。当VLLM尝试在已经初始化的Ray环境下再次初始化时,会产生冲突。
-
任务切分后的重复初始化:OpenCompass对每个切分后的子任务都会创建一个新的评估实例,而VLLM在每个实例中都会尝试初始化Ray。
-
资源管理冲突:VLLM使用Ray进行分布式计算资源管理,而重复初始化会导致资源分配混乱。
临时解决方案
目前社区提供了几种临时解决方案:
方案一:增大分区大小
通过设置--max-partition-size参数为一个较大的值,减少或避免数据集被切分:
python run.py configs/eval_config.py --max-partition-size 100000
优点:简单直接,不需要修改代码 缺点:对于非常大的数据集可能不适用,内存消耗会增加
方案二:修改VLLM初始化逻辑
在opencompass/models/vllm.py中添加Ray实例检查与关闭逻辑:
import ray
if ray.is_initialized():
self.logger.info('Shutting down existing Ray instance')
ray.shutdown()
优点:解决了重复初始化问题 缺点:每个子任务都需要重新初始化Ray和模型,导致额外开销
更优解决方案探讨
针对这个问题的更完善解决方案应该考虑以下几个方面:
-
全局Ray实例管理:在OpenCompass框架层面统一管理Ray实例的生命周期,而不是在每个子任务中单独处理。
-
模型实例复用:实现评估过程中模型实例的复用机制,避免重复加载模型带来的性能损耗。
-
任务调度优化:改进任务调度策略,对于使用VLLM后端的评估任务采用不同的切分和执行策略。
最佳实践建议
基于当前情况,建议开发者:
- 对于中小规模评估任务,优先使用方案一增大分区大小
- 对于必须切分的大规模评估,采用方案二并接受一定的性能损耗
- 关注OpenCompass官方更新,等待框架层面的完整解决方案
技术展望
随着VLLM在OpenCompass中的集成越来越成熟,预计未来版本会提供:
- 更智能的任务切分策略
- 原生的Ray实例管理机制
- 对分布式评估的更完善支持
这些改进将使得开发者能够更顺畅地利用VLLM的高性能特性进行大规模语言模型评估。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00