lost 的安装和配置教程
项目基础介绍
lost 是一个为 Android 开发者提供的开源项目,它旨在提供一个不依赖于 Google Play 服务的定位 API 替代方案。这个项目为开发者提供了与 Google Play 服务的 FusedLocationProviderApi、GeofencingApi 和 SettingsApi 的 1:1 替换。lost 通过直接调用 LocationManager 来运行,可以在任何运行 API 15 或更高版本的 Android 设备上使用,无论设备是否支持 Google Play 生态系统。
该项目主要使用 Java 语言开发。
项目使用的关键技术和框架
- LocationManager:
lost项目直接使用 Android 系统的LocationManager来获取和监控位置信息。 - Android SDK:项目完全依赖于 Android SDK,不依赖 Google Play Services。
项目安装和配置的准备工作
在开始安装和配置 lost 之前,请确保您已经满足了以下条件:
- 安装了 Android Studio。
- 安装了 JDK(Java 开发工具包)。
- 配置了 Android SDK,并安装了与
lost兼容的 Android 平台和工具。
安装步骤
以下是详细的安装步骤:
-
克隆项目仓库:
打开您的终端或命令提示符,然后使用以下命令克隆
lost项目:git clone https://github.com/lostzen/lost.git -
导入项目到 Android Studio:
打开 Android Studio,选择 "Start a new Android Studio project" 或 "Open an existing Android Studio project"。浏览到您克隆的
lost项目文件夹,然后点击 "OK" 导入项目。 -
配置项目依赖:
在 Android Studio 中,打开项目的
build.gradle文件,确保其中包含了所有必需的依赖项。 -
构建项目:
在 Android Studio 的菜单中,选择 "Build" > "Rebuild Project" 来构建
lost库。 -
将库导入您的 Android 应用:
在您的 Android 应用项目中,添加以下依赖到您的
build.gradle文件:implementation 'com.mapzen:lost:3.0.4'确保版本号与
lost库的最新版本号一致。 -
同步项目:
在 Android Studio 中,点击 "File" > "Sync Project with Gradle Files" 来同步项目。
-
使用
lost:在您的应用代码中,您现在可以直接使用
lost库提供的 API 来获取位置信息、设置地理围栏等。
按照以上步骤操作,您应该能够成功安装和配置 lost 项目,并在您的 Android 应用中使用它。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00