Apollo Client 中自定义 ApolloLink 导致重复请求问题解析
问题背景
在使用 Apollo Client 进行 GraphQL 开发时,开发者经常会通过创建自定义的 ApolloLink 来实现特定的功能需求。然而,在从 Apollo Client 3.7.14 升级到 3.10.4 版本后,一些开发者发现他们的自定义链接出现了重复请求的问题。
问题重现
当开发者创建一个自定义的 ApolloLink 并在其中直接订阅 observable 时,例如以下代码:
export class MyLink extends ApolloLink {
constructor() {
super((operation, forward) => {
const next: Observable<FetchResult> = forward(operation);
next.subscribe({
error: (e) => {
console.log(e);
},
next: (result) => {
console.log(result);
},
});
return next;
});
}
}
这种情况下,每个 GraphQL 请求都会被发送两次,这显然不是开发者期望的行为。
问题根源
这个问题的本质在于对 Observable 工作原理的理解不足。在 Apollo Client 中,HttpLink 的实现会在 observable 被订阅时执行 fetch 请求。当开发者在自定义链接中直接订阅 observable 并返回同一个 observable 时,实际上创建了两个订阅:
- 自定义链接中的显式订阅
- Apollo Client 核心自身的订阅
每个订阅都会触发一次网络请求,因此导致了重复请求的问题。
解决方案
方案一:使用 map 操作符
export class MyLink extends ApolloLink {
constructor() {
super((operation, forward) => {
return forward(operation).map((result) => {
console.log(result);
return result;
});
});
}
}
这种方法通过 map 操作符创建一个新的 observable,只观察 next 值而不创建额外的订阅。缺点是只能观察 next 值,无法处理错误情况。
方案二:创建新的 Observable
export class MyLink extends ApolloLink {
constructor() {
super((operation, forward) => {
return new Observable((observer) => {
const subscription = forward(operation).subscribe({
next: (result) => {
console.log(result);
observer.next(result);
},
error: (e) => {
console.log(e);
observer.error(e);
},
complete: observer.complete.bind(observer)
});
return () => subscription.unsubscribe();
});
});
}
}
这是更完整的解决方案,可以处理所有三种 observable 事件(next、error、complete),同时避免了重复订阅问题。这也是 Apollo Client 内置链接常用的实现模式。
版本变更说明
值得注意的是,在 Apollo Client 3.7.14 版本中,这个问题可能不明显,而在 3.10.4 版本中变得明显。这实际上是一个修复而非退化,因为早期版本可能错误地进行了请求去重,而新版本更严格地遵循了 observable 的规范。
最佳实践建议
- 在创建自定义链接时,始终考虑 observable 的订阅行为
- 优先使用方案二的模式,特别是需要处理错误情况时
- 确保正确处理 complete 事件和取消订阅逻辑
- 在升级 Apollo Client 版本时,特别注意自定义链接的行为变化
通过理解这些概念和采用正确的实现模式,开发者可以创建高效可靠的自定义链接,而不会引入重复请求的问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00