Label Studio 关键点标注数据转换为 YOLO 格式的完整指南
2025-05-10 05:46:40作者:薛曦旖Francesca
前言
在计算机视觉领域,关键点检测是一项重要的任务,广泛应用于姿态估计、目标跟踪等场景。Label Studio 作为一款流行的数据标注工具,提供了灵活的关键点标注功能。本文将详细介绍如何将 Label Studio 中的关键点标注数据转换为 YOLO 格式,以便用于 YOLOv8 等模型的训练。
关键点标注数据格式对比
Label Studio 格式特点
Label Studio 的关键点标注数据通常包含以下特征:
- 使用 JSON 格式存储标注信息
- 关键点坐标以百分比形式表示(0-100%)
- 每个关键点可以关联到特定的边界框(通过 parentID 或 relation)
- 支持为关键点定义不同的标签类别
YOLO 关键点格式要求
YOLO 的关键点格式具有以下规范:
- 每个图像对应一个文本文件
- 每行表示一个对象实例
- 格式包含:类别索引、边界框中心坐标、宽高、关键点坐标
- 所有坐标值归一化到 0-1 范围
数据转换的核心思路
转换过程主要包含以下几个关键步骤:
- 解析原始数据:读取 Label Studio 导出的 JSON 文件
- 建立关联关系:将关键点与对应的边界框进行匹配
- 坐标转换:将百分比坐标转换为归一化坐标
- 格式重组:按照 YOLO 要求的顺序组织数据
- 输出结果:生成 YOLO 格式的文本文件
详细转换方案
1. 配置 Label Studio 标注模板
为了获得最佳转换效果,建议使用以下标注模板配置:
<View>
<Image name="image" value="$image"/>
<RectangleLabels name="bbox" toName="image">
<Label value="目标类别"/>
</RectangleLabels>
<KeyPointLabels name="keypoints" toName="image" smart="true">
<Label value="关键点1"/>
<Label value="关键点2"/>
<!-- 其他关键点定义 -->
</KeyPointLabels>
</View>
这种配置会自动建立关键点与边界框的父子关系,便于后续处理。
2. Python 转换脚本实现
以下是完整的转换脚本,包含详细注释:
import json
import os
def convert_labelstudio_to_yolo(ls_json_path, output_dir, class_map):
"""
将Label Studio标注数据转换为YOLO关键点格式
参数:
ls_json_path: Label Studio导出的JSON文件路径
output_dir: 输出目录
class_map: 类别名称到索引的映射字典
"""
# 创建输出目录
os.makedirs(output_dir, exist_ok=True)
with open(ls_json_path, 'r') as f:
data = json.load(f)
for task in data:
# 获取图像基本信息
image_path = task['data'].get('image') or task['data'].get('img')
if not image_path:
continue
image_name = os.path.basename(image_path)
txt_filename = os.path.splitext(image_name)[0] + '.txt'
txt_path = os.path.join(output_dir, txt_filename)
# 处理标注结果
annotations = task.get('annotations', [])
if not annotations:
continue
annotation = annotations[0]['result']
# 存储边界框和关键点信息
bboxes = {}
keypoints = []
# 首先收集所有边界框
for item in annotation:
if item['type'] == 'rectanglelabels':
bbox_id = item['id']
label = item['value']['rectanglelabels'][0]
# 获取图像原始尺寸
width = item['original_width']
height = item['original_height']
# 转换边界框坐标
x = item['value']['x'] / 100
y = item['value']['y'] / 100
w = item['value']['width'] / 100
h = item['value']['height'] / 100
x_center = x + w/2
y_center = y + h/2
bboxes[bbox_id] = {
'class_idx': class_map.get(label, 0),
'x_center': x_center,
'y_center': y_center,
'width': w,
'height': h,
'keypoints': []
}
# 然后收集关键点并关联到边界框
for item in annotation:
if item['type'] == 'keypointlabels':
# 通过parentID或relation关联
parent_id = item.get('parentID')
if not parent_id:
# 如果没有parentID,尝试从relation中获取
for rel in annotation:
if rel.get('type') == 'relation' and rel['to_id'] == item['id']:
parent_id = rel['from_id']
break
if parent_id in bboxes:
# 转换关键点坐标
kp_x = item['value']['x'] / 100
kp_y = item['value']['y'] / 100
# 添加到对应边界框的关键点列表
bboxes[parent_id]['keypoints'].extend([kp_x, kp_y, 2]) # 2表示可见
# 生成YOLO格式内容
yolo_lines = []
for bbox in bboxes.values():
line = [
bbox['class_idx'],
bbox['x_center'],
bbox['y_center'],
bbox['width'],
bbox['height']
]
line.extend(bbox['keypoints'])
yolo_lines.append(' '.join(map(str, line)))
# 写入文件
with open(txt_path, 'w') as f:
f.write('\n'.join(yolo_lines))
3. 脚本使用示例
# 定义类别映射
class_map = {
'person': 0,
'fish': 1
# 添加其他类别...
}
# 执行转换
convert_labelstudio_to_yolo(
ls_json_path='label_studio_export.json',
output_dir='yolo_labels',
class_map=class_map
)
常见问题与解决方案
-
关键点与边界框关联失败
- 检查标注时是否正确建立了父子关系
- 确保在Label Studio中使用了正确的标注模板
- 可以尝试手动拖动关键点到边界框内
-
坐标转换错误
- 确认原始JSON中包含original_width和original_height
- 检查坐标值是否在预期范围内(0-100)
-
类别映射缺失
- 确保class_map包含所有出现的类别
- 可以为未知类别设置默认值
-
多对象实例处理
- 脚本已支持多个边界框及其关联关键点
- 每个实例会生成独立的行
最佳实践建议
-
标注规范统一
- 为团队制定统一的标注规范
- 确保关键点命名和顺序一致
-
数据验证
- 转换后可视化检查结果
- 可以使用OpenCV绘制关键点验证位置准确性
-
版本控制
- 对标注数据和转换脚本进行版本管理
- 记录转换参数和映射关系
-
性能优化
- 处理大规模数据时考虑分批处理
- 可以使用多线程加速转换过程
扩展应用
本文介绍的方法不仅适用于人体姿态估计,还可应用于:
- 动物行为分析
- 工业零件检测
- 医学图像标记
- 运动捕捉系统
只需调整Label Studio中的标签定义和YOLO模型的输出配置即可适应不同场景。
结语
将Label Studio的关键点标注数据转换为YOLO格式是训练姿态估计模型的重要前置步骤。通过本文介绍的转换方法和脚本,研究人员和开发者可以高效地准备训练数据,加速模型开发流程。实际应用中,建议根据具体需求调整脚本细节,并建立完善的数据质量控制流程。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8