基于Apache Doris构建统一数据仓库:打破保险行业数据孤岛实践
2025-06-27 16:15:10作者:贡沫苏Truman
引言
数据孤岛问题是企业数字化转型过程中普遍面临的挑战,尤其对于保险行业这类数据密集型业务而言更为突出。本文将分享一家大型保险公司如何利用Apache Doris构建新一代客户数据平台(CDP),成功解决原有架构中的数据孤岛问题,实现数据处理效率的显著提升。
数据孤岛问题的形成与挑战
数据孤岛的形成往往伴随着企业业务的发展壮大。该保险公司已服务超过5亿客户,签订570亿份保险合同,其数据特点表现为:
- 数据来源多样化:网站、移动应用、H5页面及终端设备等多渠道数据
 - 数据处理复杂化:离线数据和实时数据需要不同的处理流程
 - 数据存储分散化:不同数据类型存储在不同系统中
 
在CDP 1.0架构中,公司采用了Spark+Impala+HBase+NebulaGraph的多组件方案,导致:
- 离线标签、实时标签和图数据分散存储
 - 数据集成需要大量冗余存储和传输
 - 系统维护成本高昂
 - 集群规模被迫扩大
 
Apache Doris统一架构解决方案
CDP 2.0采用Apache Doris作为统一的数据仓库解决方案,架构优势体现在:
1. 统一的数据摄入能力
- 离线数据:采用Stream Load方式,30线程测试显示每秒可处理超过30万次upsert操作
 - 实时数据:结合Flink-Doris-Connector和Stream Load实现高效摄入
 - 联邦查询:利用Multi-Catalog功能实现跨数据源查询
 
2. 客户分析工作流优化
核心分析流程包括:
- 客户信息整理
 - 客户标签附加
 - 客户分组分析
 
关键技术实现细节
OneID统一客户识别
在多业务线场景下,同一客户可能在不同系统中使用不同标识注册。通过Apache Doris实现:
- 将所有业务线的用户注册信息汇总到大宽表
 - 使用Doris内置函数识别关联信息
 - 为每个客户分配唯一OneID
 
标签服务体系优化
系统管理着:
- 5亿客户数据
 - 500+源表
 - 2000+标签
 
离线标签处理
采用INSERT INTO SELECT结合部分列更新技术,显著降低内存消耗:
set enable_unique_key_partial_update=true;
insert into tb_label_result(one_id, labelxx) 
select one_id, label_value as labelxx
from .....
实时标签处理
同样采用部分列更新策略:
curl --location-trusted -u root: -H "partial_columns:true" -H "column_separator:," -H "columns:id,balance,last_access_time" -T /tmp/test.csv http://127.0.0.1:48037/api/db1/user_profile/_stream_load
高并发点查询优化
针对5000+ QPS的查询压力,采用三重优化:
- Prepared Statement预编译
 - 精细参数调优
 - 行缓存补充列存储
 
BE参数配置示例:
disable_storage_row_cache = false                      
storage_page_cache_limit=40%
表参数配置示例:
enable_unique_key_merge_on_write = true
store_row_column = true
light_schema_change = true
标签计算优化
针对多表关联场景(通常涉及10+表),采用colocation group策略提升性能。
客户分组分析
分组流程:
- Doris接收服务SQL
 - 执行计算
 - 通过SELECT INTO OUTFILE将结果写入S3
 
性能对比:
- Impala:50秒
 - Doris:10秒(提升4倍)
 
逆向分析能力:
- 使用BITMAP函数快速定位客户所属分组
 - BITMAP_OR、BITMAP_INTERSECT和BITMAP_XOR实现交叉分析
 
总结与展望
从CDP 1.0到2.0的升级带来了显著收益:
- 架构简化:单一系统替代多组件
 - 效率提升:数据处理速度提高4倍
 - 成本降低:减少冗余存储和传输
 
未来CDP 3.0规划:
- 结合实时和离线标签进行更灵活的分组分析
 - 探索更多实时分析场景
 
Apache Doris作为统一数据仓库解决方案,在打破数据孤岛、提升分析效率方面展现了强大能力,特别适合保险行业这类数据规模大、分析需求复杂的场景。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446