开源项目:Open RL Benchmark 指南
项目介绍
Open RL Benchmark 是一个强化学习(RL)领域全面跟踪实验的集合。该项目旨在简化RL从业者获取并比较来自诸如Stable-baselines3、Tianshou、CleanRL等知名RL库的各种指标的过程。它提供了一个详尽的数据跟踪系统,不仅仅关注如每集回报这样的常规数据,还囊括了所有算法特异性及系统级的指标。社区驱动的方式允许任何人下载、使用以及贡献数据,目前已有超过25,000次运行被追踪,累积运行时间超过8年,覆盖多种RL库和参考实现。
项目快速启动
要快速启动并使用Open RL Benchmark,遵循以下步骤:
环境准备
确保你的开发环境满足Python 3.7.1至3.9.10版本的要求,并安装Poetry工具(至少1.2.1版)。然后,执行以下命令克隆仓库并安装依赖:
git clone https://github.com/openrlbenchmark/openrlbenchmark.git
cd openrlbenchmark
poetry install
使用示例
Open RL Benchmark提供了RLops CLI来从Weights and Biases拉取和比较指标。下面的命令演示了如何对比不同策略在特定环境上的性能:
python -m openrlbenchmark.rlops \
--filters 'we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return' \
'ppo_continuous_action tag=v1.0.0-27-gde3f410&seed=1&seed=2&seed=3&cl=CleanRL PPO' \
--filters 'we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return' \
'baselines-ppo2-mlp cl=openai/baselines PPO2' \
--env-ids HalfCheetah-v2 Hopper-v2 Walker2d-v2 \
--output-filename static/0compare \
--scan-history
通过这些指令,你可以对比CleanRL与OpenAI Baselines中不同PPO变种在几个MuJoCo环境的表现。
应用案例和最佳实践
Open RL Benchmark的一个关键应用场景是评估和比较不同的强化学习算法的性能和样本效率。最佳实践中,研究人员和开发者应该利用其提供的CLI,结合--rliable
选项以获取更可靠的度量,同时通过调整--scan-history
进行全历史数据的分析,这尤其有助于确保结果的一致性和准确性。此外,定制报告和图表可以帮助团队直观地理解算法的行为差异和训练效率。
典型生态项目
Open RL Benchmark本身构成了一个强大的生态系统基石,促进多个RL库之间的比较研究。它支持包括但不限于CleanRL、Stable-baselines3在内的RL库,并且鼓励社区成员添加更多库的支持。这不仅促进了技术交流,也为新进入者提供了一套标准流程来验证他们的方法或库。对于那些致力于提升强化学习算法效率和稳定性的开发者来说,Open RL Benchmark是一个不可或缺的资源,它帮助构建了一个共享知识和进步的平台。
通过此指南,希望您能顺利入门Open RL Benchmark,深入探索强化学习的实验优化与比较分析。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









