dstack项目0.19.2版本发布:新增Nebius云平台支持与运行指标可视化
dstack是一个开源的机器学习工作流编排工具,它帮助研究人员和工程师轻松地在云平台上运行计算密集型任务。该项目通过简洁的YAML配置定义工作流,并支持多种云服务提供商的后端集成。
新增Nebius云平台支持
本次0.19.2版本最引人注目的特性是新增了对Nebius云平台的完整支持。Nebius是一家提供高性能NVIDIA GPU的云服务提供商,以其具有竞争力的价格优势而著称。
通过dstack的集成,用户现在可以直接使用Nebius提供的多种计算资源配置,包括:
- 配备L40S GPU(48GB显存)的实例
- 配备H100 GPU(80GB显存)的高性能实例
- 配备最新H200 GPU(141GB显存)的顶级实例
- 多GPU配置的分布式计算节点
这些实例覆盖了从基础研究到大规模训练的各种需求场景。特别是H200 GPU实例的加入,为需要超大显存的大模型训练任务提供了新的选择。
运行指标可视化功能增强
另一个重要改进是运行指标监控系统的全面升级。新版本中:
-
Web界面新增Metrics页面:用户现在可以通过直观的图表界面实时查看任务的CPU、内存和GPU使用情况,无需再依赖命令行工具。
-
命令行工具改进:原有的
dstack stats命令已更名为更符合语义的dstack metrics,并对输出格式进行了优化:- CPU使用率现在统一以百分比形式显示(100%表示单核满载),不再因核心数不同而产生理解上的混淆
- 内存和GPU指标显示更加清晰易读
-
监控数据标准化:所有指标数据都经过规范化处理,使得不同配置的实例间比较更加直观。
其他改进与修复
除了上述主要特性外,本次更新还包括:
- 多个文档和博客文章的更新,包括新增的MPI和NCCL/RCCL测试支持指南
- DeepSeek-R1模型响应处理的兼容性改进
- 安全增强:为指标端点添加了可选的Bearer认证支持
- 新增SgLang和NIM语言示例配置
技术价值与应用场景
dstack 0.19.2版本的发布为机器学习工作流管理带来了两个重要价值:
-
云平台选择多样性:Nebius的加入为用户提供了又一个高性价比的GPU计算选择,特别是在需要最新一代H系列GPU进行大模型训练的场景下。
-
运维可视化:增强的指标监控功能使得研究人员可以更轻松地:
- 识别计算瓶颈
- 优化资源利用率
- 及时发现异常情况
- 进行成本效益分析
这些改进共同降低了机器学习项目的基础设施管理复杂度,让研究人员可以更专注于算法和模型本身。
对于考虑采用dstack的团队来说,0.19.2版本标志着该项目在功能完备性和用户体验方面又向前迈进了一大步。特别是对于那些需要频繁在不同云平台间迁移工作负载,或需要精细监控资源使用情况的用户,这个版本提供了显著的价值提升。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00