Narwhals项目v1.40.0版本发布:性能优化与功能增强
项目简介
Narwhals是一个专注于数据处理的Python库,它提供了统一的数据操作接口,可以兼容多种后端计算引擎。该项目旨在简化数据科学家和工程师在不同数据处理框架(如Pandas、Polars、Ibis等)之间的切换工作,通过提供一致的API来降低学习成本和提高代码复用性。
版本亮点
性能优化改进
在v1.40.0版本中,开发团队对性能进行了重点优化。通过安全地原地设置Pandas属性(#2559),减少了不必要的数据复制操作,显著提升了处理效率。这一改进对于处理大型数据集尤为重要,能够有效降低内存使用和提高执行速度。
功能增强
-
rank函数支持over()操作:现在rank函数可以与over()方法配合使用,支持在惰性计算后端(如Ibis)上执行(#2533)。这为复杂的数据分析场景提供了更多可能性。
-
时间截断功能增强:在
IbisExpr.dt.truncate方法中,新增了将'1q'重映射为'3mo'的支持(#2567),使得时间序列处理更加灵活和符合用户习惯。 -
新增对数运算支持:引入了
Series|Expr.log方法(#2549),完善了数学运算功能集,为统计分析提供了更多工具。
问题修复
- 修复了PySpark的like测试问题(#2562),确保字符串匹配操作在不同后端的一致性。
- 改进了Pandas列名属性的保留机制(#2363),防止数据处理过程中元信息的意外丢失。
文档与测试改进
开发团队在本版本中投入了大量精力完善文档和测试:
-
新增了关于如何使用Narwhals生成SQL的详细指南(#2570),帮助用户更好地理解和使用这一功能。
-
重写了性能开销部分的内容(#2566),更清晰地解释了框架的性能特性。
-
更新了与Ibis比较的相关文档(#2558,#2553),反映了最新的功能支持情况。
-
在测试方面,修复了Polars nightly版本的
collect_with_kwargs问题(#2527),并增加了Expr.skew的测试用例(#2557),提高了代码的稳定性。
内部架构优化
-
将
call_kwargs重命名为更具描述性的scalar_kwargs(#2555),提高了代码可读性。 -
重构了
CompliantExpr.from_column_indices的实现(#2561),优化了内部逻辑。 -
实现了Ibis列属性的缓存机制(#2563),减少了重复计算的开销。
-
移除了
EagerExpr中冗余的scalar_kwargs存储(#2560),简化了代码结构。 -
加强了类型检查,强制执行100%的类型完备性评分(#2564),提高了代码质量。
总结
Narwhals v1.40.0版本在性能、功能和稳定性方面都有显著提升。特别是对时间序列处理和对数运算的支持,使得数据分析能力更加全面。内部架构的优化为未来的功能扩展奠定了良好基础,而文档的完善则大大提升了用户体验。
对于数据科学家和工程师来说,这个版本进一步巩固了Narwhals作为统一数据处理接口的价值,特别是在需要跨多个计算引擎工作的场景下。项目团队对细节的关注,如性能优化和类型安全,也体现了对生产环境使用需求的深刻理解。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00