OpenAI Agents Python项目中使用Deepseek模型的结构化输出问题解析
2025-05-25 22:16:13作者:董斯意
概述
在使用OpenAI Agents Python项目时,开发者可能会遇到与Deepseek模型集成时出现的结构化输出兼容性问题。本文将深入分析问题根源,并提供可行的解决方案。
问题现象
当开发者尝试将Deepseek模型作为OpenAI Agents的后端时,可能会遇到以下错误信息:
Failed to deserialize the JSON body into the target type: response_format: response_format.type `json_schema` is unavailable now
这个错误表明系统无法处理JSON Schema格式的响应,这直接影响了Agent的正常运行。
技术背景
OpenAI Agents Python项目默认使用结构化输出功能,这是一种比传统JSON模式更先进的输出格式。结构化输出允许开发者:
- 定义精确的输出模式
- 确保响应符合预定义的格式
- 自动验证输出数据
然而,Deepseek模型目前仅支持基本的JSON模式(response_format设置为json_object),而不支持更高级的结构化输出(response_format设置为json_schema)。
解决方案
方案一:使用OpenRouter作为中间层
通过OpenRouter平台可以间接使用Deepseek模型并支持结构化输出:
from openai import AsyncOpenAI
from agents import OpenAIChatCompletionsModel, Agent
from pydantic import BaseModel
client = AsyncOpenAI(
api_key="你的OpenRouter API密钥",
base_url="https://openrouter.ai/api/v1",
)
model = OpenAIChatCompletionsModel(
model="deepseek/deepseek-r1",
openai_client=client
)
class CustomOutput(BaseModel):
result: str
agent = Agent(
name="自定义Agent",
instructions="你的指令...确保输出符合{'result':'你的响应'}格式",
model=model,
output_type=CustomOutput
)
方案二:调整提示工程
如果必须直接使用Deepseek API,可以通过调整提示词来获得近似结构化输出的效果:
- 在指令中明确要求JSON格式输出
- 提供具体的输出模式示例
- 强调不要包含任何额外文本或代码块标记
agent = Agent(
name="基础Agent",
instructions="""你是一个助手。必须严格按照以下JSON格式响应:
{"response": "你的回答内容"}
不要包含任何其他文本,不要使用代码块标记""",
model=model,
output_type=BasicOutput
)
最佳实践建议
- 模型兼容性检查:在使用第三方模型前,先确认其支持的功能特性
- 错误处理:为JSON解析添加适当的错误处理逻辑
- 输出验证:即使模型声称支持JSON输出,也应验证输出格式
- 备用方案:为不支持结构化输出的模型准备降级方案
未来展望
随着AI模型生态的发展,预计更多第三方模型将逐步支持结构化输出功能。开发者可以关注Deepseek等模型的更新日志,及时了解新功能支持情况。
对于OpenAI Agents Python项目的用户来说,理解底层技术实现有助于更好地解决集成问题,并能在模型选择上做出更明智的决策。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178