OpenAI Agents Python项目中使用Deepseek模型的结构化输出问题解析
2025-05-25 21:34:21作者:董斯意
概述
在使用OpenAI Agents Python项目时,开发者可能会遇到与Deepseek模型集成时出现的结构化输出兼容性问题。本文将深入分析问题根源,并提供可行的解决方案。
问题现象
当开发者尝试将Deepseek模型作为OpenAI Agents的后端时,可能会遇到以下错误信息:
Failed to deserialize the JSON body into the target type: response_format: response_format.type `json_schema` is unavailable now
这个错误表明系统无法处理JSON Schema格式的响应,这直接影响了Agent的正常运行。
技术背景
OpenAI Agents Python项目默认使用结构化输出功能,这是一种比传统JSON模式更先进的输出格式。结构化输出允许开发者:
- 定义精确的输出模式
- 确保响应符合预定义的格式
- 自动验证输出数据
然而,Deepseek模型目前仅支持基本的JSON模式(response_format设置为json_object),而不支持更高级的结构化输出(response_format设置为json_schema)。
解决方案
方案一:使用OpenRouter作为中间层
通过OpenRouter平台可以间接使用Deepseek模型并支持结构化输出:
from openai import AsyncOpenAI
from agents import OpenAIChatCompletionsModel, Agent
from pydantic import BaseModel
client = AsyncOpenAI(
api_key="你的OpenRouter API密钥",
base_url="https://openrouter.ai/api/v1",
)
model = OpenAIChatCompletionsModel(
model="deepseek/deepseek-r1",
openai_client=client
)
class CustomOutput(BaseModel):
result: str
agent = Agent(
name="自定义Agent",
instructions="你的指令...确保输出符合{'result':'你的响应'}格式",
model=model,
output_type=CustomOutput
)
方案二:调整提示工程
如果必须直接使用Deepseek API,可以通过调整提示词来获得近似结构化输出的效果:
- 在指令中明确要求JSON格式输出
- 提供具体的输出模式示例
- 强调不要包含任何额外文本或代码块标记
agent = Agent(
name="基础Agent",
instructions="""你是一个助手。必须严格按照以下JSON格式响应:
{"response": "你的回答内容"}
不要包含任何其他文本,不要使用代码块标记""",
model=model,
output_type=BasicOutput
)
最佳实践建议
- 模型兼容性检查:在使用第三方模型前,先确认其支持的功能特性
- 错误处理:为JSON解析添加适当的错误处理逻辑
- 输出验证:即使模型声称支持JSON输出,也应验证输出格式
- 备用方案:为不支持结构化输出的模型准备降级方案
未来展望
随着AI模型生态的发展,预计更多第三方模型将逐步支持结构化输出功能。开发者可以关注Deepseek等模型的更新日志,及时了解新功能支持情况。
对于OpenAI Agents Python项目的用户来说,理解底层技术实现有助于更好地解决集成问题,并能在模型选择上做出更明智的决策。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881