首页
/ EasyEdit项目中ROME与r-ROME实现及泛化指标解析

EasyEdit项目中ROME与r-ROME实现及泛化指标解析

2025-07-03 10:07:34作者:范垣楠Rhoda

概述

EasyEdit项目作为模型编辑工具库,其核心功能之一是实现ROME(Rank-One Model Editing)算法。近期用户在使用过程中对ROME的不同版本实现以及泛化指标计算提出了具体疑问,本文将深入解析这些技术细节。

ROME与r-ROME版本差异

EasyEdit当前稳定版本采用的是原始ROME算法实现,该算法基于2022年发表的论文设计。值得注意的是,社区中还存在改进版本r-ROME(refined ROME),该版本对原始算法进行了优化调整。

项目维护者表示,为了保持基准测试的完整性,原始ROME实现将作为基线保留,同时正在开发集成r-ROME作为新方法的功能。这种双版本策略既保证了研究可比性,又能让用户体验算法改进带来的优势。

泛化指标计算详解

在模型编辑效果评估中,泛化指标的计算至关重要。用户在使用过程中发现rephrase_prompts参数未生效,经排查发现是参数名称拼写错误所致。正确的参数名应为"rephrase_prompts"(注意单复数形式)。

完整的评估指标包含三个维度:

  1. 重写准确率(rewrite_acc):衡量模型对目标编辑的准确执行程度
  2. 可移植性(portability):评估编辑效果在相关但不同表述上的泛化能力
  3. 局部性(locality):检验编辑对无关内容的影响程度

评估结果以字典形式返回,包含编辑前后的指标对比。其中post['rewrite_acc']表示编辑后所有测试案例的平均重写准确率。

多提示输入规范

对于需要测试多个局部性和可移植性提示的场景,输入数据应采用字典结构组织。每个评估维度需要提供:

  • 提示文本(prompt)
  • 对应的真实值(ground_truth)

例如,测试多个局部性提示时,数据结构应为:

{
    'locality_prompt1': '提示文本1',
    'locality_ground_truth1': '真实值1',
    'locality_prompt2': '提示文本2', 
    'locality_ground_truth2': '真实值2'
}

顺序编辑模式

当设置sequential_edit=True时,系统会在完成所有指定编辑后统一进行评估。这种模式适合需要批量编辑后再测试整体效果的场景,与逐条编辑即时评估的模式形成对比。

实现建议

对于需要比较ROME和r-ROME效果的研究者,建议:

  1. 当前使用原始ROME实现作为基线
  2. 关注项目更新,等待r-ROME正式集成
  3. 确保参数名称准确,特别是rephrase_prompts等关键参数
  4. 按照规范格式组织多提示输入数据

通过正确配置这些参数和选项,用户可以全面评估模型编辑效果,获得有意义的泛化性能指标。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
73
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
922
551
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
47
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16