深入理解Controller-Runtime中的缓存一致性与资源获取问题
在Kubernetes控制器开发过程中,使用controller-runtime框架时,开发者可能会遇到一个看似奇怪的现象:当在Reconcile函数中尝试获取刚刚创建或更新的资源时,偶尔会出现"Not Found"错误。这种现象实际上揭示了controller-runtime底层缓存机制的重要特性。
缓存最终一致性原理
controller-runtime的客户端默认使用缓存机制来提高性能,这个缓存是基于Kubernetes的watch机制实现的。缓存系统遵循最终一致性原则,这意味着:
- 当资源发生变化时,变更通知会通过watch事件传播
- 这些事件到达缓存并更新本地状态需要一定时间
- 在极短时间内,缓存可能无法立即反映出最新的资源状态
这种设计是出于性能考虑,避免了每次操作都直接访问API服务器带来的延迟和负载。
典型问题场景分析
在示例代码中,开发者创建了三个并发的goroutine:
- 管理器的启动goroutine
- 控制器注册goroutine
- 资源创建goroutine
当资源创建goroutine通过CreateOrUpdate操作修改ConfigMap后,控制器可能会立即收到变更事件,但此时缓存可能尚未完全更新。这时如果在Reconcile函数中尝试获取该资源,就可能遇到"Not Found"错误。
解决方案与最佳实践
要解决这个问题,开发者需要理解以下几点:
-
使用同一缓存实例:确保事件生成和读取操作使用相同的缓存实例。不同缓存实例之间无法保证状态同步。
-
事件与缓存的关系:当使用同一缓存时,收到事件意味着该对象已经在缓存中可用,因为事件正是从同一个watch流派生的。
-
正确的控制器注册方式:如示例所示,使用WatchesRawSource并明确指定缓存源可以确保事件和读取操作的一致性。
-
等待缓存同步:在关键操作前,可以使用GetCache().WaitForCacheSync()确保缓存完成初始同步。
深入技术细节
controller-runtime的缓存实现基于Informers机制,它提供了:
- 本地缓存以减少API服务器压力
- 事件通知机制
- 高效的资源变更检测
缓存更新延迟通常在毫秒级别,但在高负载或网络延迟情况下可能更明显。这种设计在分布式系统中很常见,需要在性能和一致性之间取得平衡。
实际开发建议
- 在编写控制器时,应当假设Reconcile可能在任何资源状态下被调用
- 处理NotFound错误时,考虑重试逻辑或优雅降级
- 对于关键操作,可以直接使用API客户端而非缓存客户端
- 在测试环境中模拟高延迟场景,验证控制器的健壮性
理解这些底层机制将帮助开发者编写出更可靠、更健壮的Kubernetes控制器,有效避免因缓存一致性导致的各种边界情况问题。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0124AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









