【免费下载】 高效Kolmogorov-Arnold网络(KAN)使用教程
2026-01-16 10:41:56作者:凤尚柏Louis
项目介绍
efficient-kan 是一个高效的Kolmogorov-Arnold网络(KAN)的纯PyTorch实现。KAN是一种神经网络模型,其原始实现的主要性能瓶颈在于需要将所有中间变量扩展以执行不同的激活函数。本项目通过重新构造计算过程,显著降低了内存成本,并将计算简化为直接的矩阵乘法,同时自然地适用于前向和反向传播。
项目快速启动
安装依赖
首先,确保你已经安装了Python和PyTorch。然后,克隆项目仓库并安装必要的依赖:
git clone https://github.com/Blealtan/efficient-kan.git
cd efficient-kan
pip install -r requirements.txt
运行示例
项目中包含了一些示例代码,你可以通过以下命令运行这些示例:
python examples/example.py
自定义模型
你也可以自定义KAN模型并进行训练。以下是一个简单的示例代码:
import torch
from efficient_kan import KAN
# 定义输入和输出维度
in_features = 128
out_features = 10
# 创建KAN模型
model = KAN(in_features, out_features)
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 生成随机数据
inputs = torch.randn(32, in_features)
targets = torch.randint(0, out_features, (32,))
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Loss: {loss.item()}')
应用案例和最佳实践
图像分类
KAN模型在图像分类任务中表现出色。你可以使用预训练的KAN模型或在特定数据集上进行微调。以下是一个使用KAN模型进行图像分类的示例:
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
# 数据预处理
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
# 加载数据集
train_dataset = CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
# 训练模型
for epoch in range(10):
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')
文本分类
KAN模型也可以应用于文本分类任务。你可以使用预训练的KAN模型或在特定文本数据集上进行微调。以下是一个使用KAN模型进行文本分类的示例:
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
# 数据预处理
tokenizer = get_tokenizer('basic_english')
train_iter = AG_NEWS(split='train')
def yield_tokens(data_iter):
for _, text in data_iter:
yield tokenizer(text)
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"])
text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251