Sniffer 项目技术文档
2024-12-20 11:26:05作者:房伟宁
1. 安装指南
1.1 安装 Sniffer
要安装 sniffer,请在终端中运行以下命令:
pip install sniffer
1.2 安装依赖库
根据你的操作系统,安装相应的文件系统监控库以提高性能:
-
Linux: 安装
pyinotifypip install pyinotify -
Windows: 安装
pywin32pip install pywin32 -
Mac OS X 10.5+: 安装
MacFSEventspip install MacFSEvents
1.3 可选依赖库
如果你需要额外的通知支持,可以安装以下库:
-
Growl 支持 (Mac OS X): 安装
gntppip install gntp -
原生 OS X 通知 (Mac OS X 10.9.4+): 安装
osxnotify和libosxnotifypip install osxnotify pip install libosxnotify -
LibNotify 支持 (Linux): 安装
py-notifypip install py-notify
2. 项目的使用说明
2.1 基本使用
安装完成后,在项目目录中运行以下命令:
sniffer
sniffer 会自动检测代码变化并重新运行测试。你可以使用 sniffer --help 查看所有可用选项。
2.2 传递 Nose 参数
你可以通过 -x 前缀传递 Nose 参数,例如:
sniffer -x--with-doctest
2.3 高级用法
如果你不想使用 Nose,可以在当前工作目录中创建一个 scent.py 文件,自定义 sniffer 的行为。例如:
from sniffer.api import *
import os, termstyle
pass_fg_color = termstyle.green
pass_bg_color = termstyle.bg_default
fail_fg_color = termstyle.red
fail_bg_color = termstyle.bg_default
watch_paths = ['.', 'tests/']
@file_validator
def py_files(filename):
return filename.endswith('.py') and not os.path.basename(filename).startswith('.')
@runnable
def execute_nose(*args):
import nose
return nose.run(argv=list(args))
3. 项目API使用文档
3.1 API 概述
sniffer 提供了一个小型的 API,允许用户自定义文件验证和测试执行。主要 API 包括:
file_validator: 用于定义文件验证函数,决定哪些文件变化会触发测试。runnable: 用于定义测试执行函数,决定如何运行测试。select_runnable: 用于选择特定的runnable函数。
3.2 示例
以下是一个使用 file_validator 和 runnable 的示例:
@file_validator
def py_files(filename):
return filename.endswith('.py') and not os.path.basename(filename).startswith('.')
@runnable
def execute_nose(*args):
import nose
return nose.run(argv=list(args))
4. 项目安装方式
4.1 通过 pip 安装
最简单的安装方式是通过 pip 安装:
pip install sniffer
4.2 手动安装
你也可以从 GitHub 下载源码并手动安装:
git clone https://github.com/jeffh/sniffer.git
cd sniffer
python setup.py install
4.3 依赖库安装
根据你的操作系统,安装相应的依赖库以提高性能。
通过以上步骤,你应该能够顺利安装并使用 sniffer 项目。如果在使用过程中遇到问题,可以参考项目的 GitHub Wiki 或提交 Issue。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
281
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100