SHAP项目中的Matplotlib图像比较问题分析与解决方案
问题背景
在SHAP项目的持续集成(CI)测试过程中,开发团队发现了一些与Matplotlib图像比较相关的测试失败问题。这些问题主要出现在两个场景:一是图像插值参数的变化导致测试图像不匹配,二是Matplotlib 3.10版本对负号周围空格处理方式的改变导致文本位置差异。
图像插值参数问题分析
Matplotlib的rcParams参数在不同版本间存在差异,特别是与图像渲染相关的参数。通过深入分析,我们发现以下关键参数在不同版本中的默认值发生了变化:
-
image.interpolation参数:- Matplotlib 3.9默认值为"antialiased"
- Matplotlib 3.10默认值变为"auto"
- 但在图像比较测试中,pytest的
@mpl_image_compare装饰器会覆盖这些值,统一设置为"bilinear"
-
image.interpolation_stage参数:- Matplotlib 3.9默认值为"data"
- Matplotlib 3.10默认值变为"auto"
- 同样会被测试装饰器覆盖
这种差异导致了test_image.py中的test_image_single和test_image_multi测试失败,因为生成的图像与基线图像在插值处理上存在差异。
解决方案
通过显式设置以下参数,可以确保测试在不同Matplotlib版本下生成一致的图像:
plt.rcParams["image.interpolation"] = "bilinear"
plt.rcParams["image.interpolation_stage"] = "data"
这种方法强制统一了图像渲染方式,消除了版本差异带来的影响。
负号空格处理问题分析
另一个问题出现在test_waterfall_custom_style测试中,涉及Matplotlib对包含负号的文本的渲染方式。Matplotlib 3.10版本对负号周围空格的处理逻辑进行了优化,这导致:
- 文本位置在3.9和3.10版本间有微小偏移
- 当文本颜色设置为高对比度(如红色)时,这种偏移在图像比较中会产生更大的差异值
- 差异值从正常的2.1增加到4.1,超过了测试设置的容差阈值3
这种变化源于Matplotlib对数学文本渲染的改进,特别是对负号周围空格的处理逻辑。
解决方案
由于这种渲染行为的变化是Matplotlib的内部优化,且不提供配置选项,我们采取以下措施:
- 暂时提高测试的容差阈值,以适应不同版本间的差异
- 未来当项目全面升级到Matplotlib 3.10+时,可以重新评估并调整容差阈值
- 这种调整预计在项目放弃对Python 3.9的支持时自然完成
总结与最佳实践
在开发基于Matplotlib的可视化项目时,图像比较测试可能会面临版本差异带来的挑战。通过这次问题的解决,我们可以总结出以下最佳实践:
-
明确设置关键渲染参数:对于影响图像输出的关键参数,如插值方法,应该在测试中显式设置,而不是依赖默认值。
-
合理设置测试容差:对于可能因版本更新而变化的渲染细节,设置适当的容差阈值,平衡测试的严格性和实用性。
-
版本兼容性规划:在项目路线图中考虑依赖库的版本升级计划,适时调整测试策略。
-
测试隔离性:确保测试装饰器不会意外覆盖重要的配置参数,必要时在测试用例中重新设置关键参数。
通过这些措施,可以构建更加健壮和可维护的可视化测试套件,确保项目在不同环境下都能保持一致的输出质量。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00