MVCNN-TensorFlow 的安装和配置教程
2025-05-29 21:43:52作者:秋泉律Samson
项目基础介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的 Multi-View CNN (MVCNN) 实现,用于3D形状识别。MVCNN 通过从多个视角渲染3D形状并利用卷积神经网络来提取特征,从而实现对3D形状的识别。该项目是 Su 等人提出的方法的一种实现。
主要编程语言
该项目的主要编程语言是 Python,同时也使用了 Shell 脚本来辅助执行一些预处理和训练任务。
关键技术和框架
- TensorFlow:一个开源的机器学习框架,用于数据流编程。
- Multi-View CNN (MVCNN):一种用于3D形状识别的卷积神经网络架构。
- AlexNet:一个著名的深度卷积神经网络模型,本项目使用其预训练权重。
安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖项:
- CUDA(7.5版本或更高)
- TensorFlow(0.10版本或更高)
- Python 2.7
- 一些其他必要的 Python 包
安装步骤
-
克隆项目仓库
首先,您需要在您的计算机上克隆 GitHub 上的 MVCNN-TensorFlow 仓库。打开终端或命令行界面,并执行以下命令:
git clone https://github.com/WeiTang114/MVCNN-TensorFlow.git cd MVCNN-TensorFlow
-
准备数据
该项目需要准备渲染后的3D形状视图数据。例如,可以使用 ModelNet40 数据集。每个3D形状应以12个不同视角进行渲染。每个视角的数据应存储在一个文本文件中,文件格式如下:
category_id number_of_views view_image_1.jpg view_image_2.jpg ... view_image_12.jpg
请确保在
globals.py
文件中指定了正确的数据列表文件路径。 -
准备预训练模型
项目使用预训练的 AlexNet 模型,由于 GitHub 文件大小限制,该模型被拆分为多个文件。您需要执行以下命令来合并这些文件:
./prepare_pretrained_alexnet.sh
-
训练模型
在第一次训练模型之前,创建一个临时目录并运行以下命令:
mkdir tmp python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001
如果您想要进行微调训练,可以使用以下命令:
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001
其中
N
是您希望开始微调的检查点迭代次数。 -
测试模型
要测试模型,请使用以下命令,其中
N
是您想要测试的检查点迭代次数:python test.py --weights=`pwd`/tmp/model.ckpt-N
以上就是 MVCNN-TensorFlow 的安装和配置教程。请确保按照以上步骤操作,如果遇到任何问题,请检查您的环境配置和步骤是否正确。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
486
37

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
315
10

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
191

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
991
395

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
276

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
937
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69