MVCNN-TensorFlow 的安装和配置教程
2025-05-29 06:34:47作者:秋泉律Samson
项目基础介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的 Multi-View CNN (MVCNN) 实现,用于3D形状识别。MVCNN 通过从多个视角渲染3D形状并利用卷积神经网络来提取特征,从而实现对3D形状的识别。该项目是 Su 等人提出的方法的一种实现。
主要编程语言
该项目的主要编程语言是 Python,同时也使用了 Shell 脚本来辅助执行一些预处理和训练任务。
关键技术和框架
- TensorFlow:一个开源的机器学习框架,用于数据流编程。
- Multi-View CNN (MVCNN):一种用于3D形状识别的卷积神经网络架构。
- AlexNet:一个著名的深度卷积神经网络模型,本项目使用其预训练权重。
安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖项:
- CUDA(7.5版本或更高)
- TensorFlow(0.10版本或更高)
- Python 2.7
- 一些其他必要的 Python 包
安装步骤
-
克隆项目仓库
首先,您需要在您的计算机上克隆 GitHub 上的 MVCNN-TensorFlow 仓库。打开终端或命令行界面,并执行以下命令:
git clone https://github.com/WeiTang114/MVCNN-TensorFlow.git cd MVCNN-TensorFlow -
准备数据
该项目需要准备渲染后的3D形状视图数据。例如,可以使用 ModelNet40 数据集。每个3D形状应以12个不同视角进行渲染。每个视角的数据应存储在一个文本文件中,文件格式如下:
category_id number_of_views view_image_1.jpg view_image_2.jpg ... view_image_12.jpg请确保在
globals.py文件中指定了正确的数据列表文件路径。 -
准备预训练模型
项目使用预训练的 AlexNet 模型,由于 GitHub 文件大小限制,该模型被拆分为多个文件。您需要执行以下命令来合并这些文件:
./prepare_pretrained_alexnet.sh -
训练模型
在第一次训练模型之前,创建一个临时目录并运行以下命令:
mkdir tmp python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001如果您想要进行微调训练,可以使用以下命令:
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001其中
N是您希望开始微调的检查点迭代次数。 -
测试模型
要测试模型,请使用以下命令,其中
N是您想要测试的检查点迭代次数:python test.py --weights=`pwd`/tmp/model.ckpt-N
以上就是 MVCNN-TensorFlow 的安装和配置教程。请确保按照以上步骤操作,如果遇到任何问题,请检查您的环境配置和步骤是否正确。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355