MVCNN-TensorFlow 的安装和配置教程
2025-05-29 02:30:35作者:秋泉律Samson
项目基础介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的 Multi-View CNN (MVCNN) 实现,用于3D形状识别。MVCNN 通过从多个视角渲染3D形状并利用卷积神经网络来提取特征,从而实现对3D形状的识别。该项目是 Su 等人提出的方法的一种实现。
主要编程语言
该项目的主要编程语言是 Python,同时也使用了 Shell 脚本来辅助执行一些预处理和训练任务。
关键技术和框架
- TensorFlow:一个开源的机器学习框架,用于数据流编程。
- Multi-View CNN (MVCNN):一种用于3D形状识别的卷积神经网络架构。
- AlexNet:一个著名的深度卷积神经网络模型,本项目使用其预训练权重。
安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖项:
- CUDA(7.5版本或更高)
- TensorFlow(0.10版本或更高)
- Python 2.7
- 一些其他必要的 Python 包
安装步骤
-
克隆项目仓库
首先,您需要在您的计算机上克隆 GitHub 上的 MVCNN-TensorFlow 仓库。打开终端或命令行界面,并执行以下命令:
git clone https://github.com/WeiTang114/MVCNN-TensorFlow.git cd MVCNN-TensorFlow -
准备数据
该项目需要准备渲染后的3D形状视图数据。例如,可以使用 ModelNet40 数据集。每个3D形状应以12个不同视角进行渲染。每个视角的数据应存储在一个文本文件中,文件格式如下:
category_id number_of_views view_image_1.jpg view_image_2.jpg ... view_image_12.jpg请确保在
globals.py文件中指定了正确的数据列表文件路径。 -
准备预训练模型
项目使用预训练的 AlexNet 模型,由于 GitHub 文件大小限制,该模型被拆分为多个文件。您需要执行以下命令来合并这些文件:
./prepare_pretrained_alexnet.sh -
训练模型
在第一次训练模型之前,创建一个临时目录并运行以下命令:
mkdir tmp python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001如果您想要进行微调训练,可以使用以下命令:
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001其中
N是您希望开始微调的检查点迭代次数。 -
测试模型
要测试模型,请使用以下命令,其中
N是您想要测试的检查点迭代次数:python test.py --weights=`pwd`/tmp/model.ckpt-N
以上就是 MVCNN-TensorFlow 的安装和配置教程。请确保按照以上步骤操作,如果遇到任何问题,请检查您的环境配置和步骤是否正确。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.65 K
Ascend Extension for PyTorch
Python
131
157
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
198
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.46 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206