MVCNN-TensorFlow 的安装和配置教程
2025-05-29 05:43:38作者:秋泉律Samson
项目基础介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的 Multi-View CNN (MVCNN) 实现,用于3D形状识别。MVCNN 通过从多个视角渲染3D形状并利用卷积神经网络来提取特征,从而实现对3D形状的识别。该项目是 Su 等人提出的方法的一种实现。
主要编程语言
该项目的主要编程语言是 Python,同时也使用了 Shell 脚本来辅助执行一些预处理和训练任务。
关键技术和框架
- TensorFlow:一个开源的机器学习框架,用于数据流编程。
- Multi-View CNN (MVCNN):一种用于3D形状识别的卷积神经网络架构。
- AlexNet:一个著名的深度卷积神经网络模型,本项目使用其预训练权重。
安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖项:
- CUDA(7.5版本或更高)
- TensorFlow(0.10版本或更高)
- Python 2.7
- 一些其他必要的 Python 包
安装步骤
-
克隆项目仓库
首先,您需要在您的计算机上克隆 GitHub 上的 MVCNN-TensorFlow 仓库。打开终端或命令行界面,并执行以下命令:
git clone https://github.com/WeiTang114/MVCNN-TensorFlow.git cd MVCNN-TensorFlow
-
准备数据
该项目需要准备渲染后的3D形状视图数据。例如,可以使用 ModelNet40 数据集。每个3D形状应以12个不同视角进行渲染。每个视角的数据应存储在一个文本文件中,文件格式如下:
category_id number_of_views view_image_1.jpg view_image_2.jpg ... view_image_12.jpg
请确保在
globals.py
文件中指定了正确的数据列表文件路径。 -
准备预训练模型
项目使用预训练的 AlexNet 模型,由于 GitHub 文件大小限制,该模型被拆分为多个文件。您需要执行以下命令来合并这些文件:
./prepare_pretrained_alexnet.sh
-
训练模型
在第一次训练模型之前,创建一个临时目录并运行以下命令:
mkdir tmp python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001
如果您想要进行微调训练,可以使用以下命令:
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001
其中
N
是您希望开始微调的检查点迭代次数。 -
测试模型
要测试模型,请使用以下命令,其中
N
是您想要测试的检查点迭代次数:python test.py --weights=`pwd`/tmp/model.ckpt-N
以上就是 MVCNN-TensorFlow 的安装和配置教程。请确保按照以上步骤操作,如果遇到任何问题,请检查您的环境配置和步骤是否正确。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
530
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401