MVCNN-TensorFlow 的安装和配置教程
2025-05-29 13:06:33作者:秋泉律Samson
项目基础介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的 Multi-View CNN (MVCNN) 实现,用于3D形状识别。MVCNN 通过从多个视角渲染3D形状并利用卷积神经网络来提取特征,从而实现对3D形状的识别。该项目是 Su 等人提出的方法的一种实现。
主要编程语言
该项目的主要编程语言是 Python,同时也使用了 Shell 脚本来辅助执行一些预处理和训练任务。
关键技术和框架
- TensorFlow:一个开源的机器学习框架,用于数据流编程。
- Multi-View CNN (MVCNN):一种用于3D形状识别的卷积神经网络架构。
- AlexNet:一个著名的深度卷积神经网络模型,本项目使用其预训练权重。
安装和配置准备工作
在开始安装之前,请确保您的系统中已经安装了以下依赖项:
- CUDA(7.5版本或更高)
- TensorFlow(0.10版本或更高)
- Python 2.7
- 一些其他必要的 Python 包
安装步骤
-
克隆项目仓库
首先,您需要在您的计算机上克隆 GitHub 上的 MVCNN-TensorFlow 仓库。打开终端或命令行界面,并执行以下命令:
git clone https://github.com/WeiTang114/MVCNN-TensorFlow.git cd MVCNN-TensorFlow -
准备数据
该项目需要准备渲染后的3D形状视图数据。例如,可以使用 ModelNet40 数据集。每个3D形状应以12个不同视角进行渲染。每个视角的数据应存储在一个文本文件中,文件格式如下:
category_id number_of_views view_image_1.jpg view_image_2.jpg ... view_image_12.jpg请确保在
globals.py文件中指定了正确的数据列表文件路径。 -
准备预训练模型
项目使用预训练的 AlexNet 模型,由于 GitHub 文件大小限制,该模型被拆分为多个文件。您需要执行以下命令来合并这些文件:
./prepare_pretrained_alexnet.sh -
训练模型
在第一次训练模型之前,创建一个临时目录并运行以下命令:
mkdir tmp python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001如果您想要进行微调训练,可以使用以下命令:
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001其中
N是您希望开始微调的检查点迭代次数。 -
测试模型
要测试模型,请使用以下命令,其中
N是您想要测试的检查点迭代次数:python test.py --weights=`pwd`/tmp/model.ckpt-N
以上就是 MVCNN-TensorFlow 的安装和配置教程。请确保按照以上步骤操作,如果遇到任何问题,请检查您的环境配置和步骤是否正确。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1