Burn项目中简单回归模型的数据归一化问题分析
2025-05-22 20:10:17作者:董宙帆
问题背景
在使用Burn深度学习框架的简单回归示例(simple-regression)时,开发者发现了一个有趣的现象:当禁用数据归一化(min_max_norm)功能时,模型对批量测试数据的预测结果全部相同;而启用归一化后,虽然预测值各不相同,但模型性能表现不佳。
问题现象分析
在回归模型的推理阶段,开发者观察到两种异常情况:
-
禁用归一化时的同值预测:当关闭数据归一化功能后,模型对批量测试数据的所有样本都输出了完全相同的预测值。这种现象表明模型在未归一化数据上出现了退化行为。
-
启用归一化时的性能问题:虽然开启归一化后预测值变得多样,但预测结果与真实值差距较大,模型未能达到理想的回归效果。
技术原因探究
归一化的重要性
数据归一化是机器学习预处理的关键步骤,特别是在神经网络训练中。当输入特征尺度差异较大时:
- 可能导致梯度更新不稳定
- 不同特征的权重更新速度不一致
- 模型难以收敛或出现NaN值
同值预测的成因
当禁用归一化时,输入数据可能超出了模型训练时"见过"的数值范围。这种情况下:
- 激活函数可能进入饱和区(如sigmoid的平坦区域)
- 网络权重无法对超出训练范围的输入做出有意义的响应
- 模型退化为输出一个固定值(可能是训练数据的均值)
性能不佳的原因
即使启用归一化后性能仍然不佳,可能有以下原因:
- 批归一化方式不当:原示例中对每个批次单独计算归一化参数,这会导致训练和推理时的数据分布不一致
- 数据集划分问题:训练集和测试集可能来自不同分布
- 模型容量不足:网络结构可能过于简单,无法捕捉数据中的复杂模式
解决方案与最佳实践
针对这些问题,建议采取以下改进措施:
- 全局归一化参数:应基于完整训练集计算归一化参数(均值和方差),并在训练和推理时统一使用
- 合理的数据划分:确保训练集、验证集和测试集来自同一分布
- 模型调优:适当增加网络深度或宽度,调整学习率等超参数
- 损失监控:添加梯度裁剪、权重初始化检查等机制防止NaN出现
实际验证结果
在改进后的实现中,开发者获得了更合理的模型表现:
- 验证集MSE稳定在0.55-0.6之间
- 预测值与真实值呈现良好的线性关系
- 批量推理时各样本预测结果各不相同且接近真实值
结论
数据预处理对神经网络性能有着决定性影响。在回归任务中,正确的归一化策略不仅能防止模型退化,还能显著提升预测精度。开发者应特别注意训练与推理时数据处理的统一性,避免因预处理不一致导致的性能下降。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
267
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
52
32