优雅SciPy项目中的线性代数应用指南
2025-06-02 21:35:51作者:冯梦姬Eddie
线性代数基础概念回顾
线性代数是科学计算的基础,本章将重点介绍SciPy中用于线性代数运算的模块。在开始之前,我们需要明确一些基本概念:
- 向量:有序的数字集合,可以表示为列向量或行向量
- 矩阵:由向量组成的二维数组,可以表示线性变换
- 矩阵乘法:使用
@运算符进行矩阵乘法运算
在Python中,我们通常会遵循线性代数的命名约定,使用大写字母表示矩阵,小写字母表示向量和标量:
import numpy as np
m, n = (5, 6) # 标量
M = np.ones((m, n)) # 矩阵
v = np.random.random((n,)) # 向量
w = M @ v # 另一个向量
图的拉普拉斯矩阵
图论中的图可以用邻接矩阵表示,其中节点编号从0到n-1,如果节点i和j之间有边,则矩阵的(i,j)位置为1。
拉普拉斯矩阵定义
拉普拉斯矩阵L定义为度矩阵D减去邻接矩阵A:
L = D - A
其中度矩阵D是一个对角矩阵,对角线元素表示每个节点的度数(连接的边数)。
拉普拉斯矩阵的性质
拉普拉斯矩阵有许多重要性质,特别是它的特征值和特征向量。第二小的特征值对应的特征向量称为费德勒向量(Fiedler vector),可以用于图的划分。
让我们通过一个简单的网络示例来说明:
A = np.array([[0, 1, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 1, 0]], dtype=float)
计算拉普拉斯矩阵
首先计算度矩阵D:
d = np.sum(A, axis=0)
D = np.diag(d)
然后计算拉普拉斯矩阵L:
L = D - A
特征值与特征向量
计算拉普拉斯矩阵的特征值和特征向量:
val, Vec = np.linalg.eigh(L)
费德勒向量是第二小特征值对应的特征向量:
f = Vec[:, np.argsort(val)[1]]
通过费德勒向量的符号,我们可以将图中的节点分成两组:
colors = ['orange' if eigv > 0 else 'gray' for eigv in f]
nx.draw(g, pos=layout, with_labels=True, node_color=colors)
实际应用:线虫神经元网络分析
让我们看一个实际应用案例:分析线虫的神经元网络。研究人员使用了一种改进的拉普拉斯矩阵——度归一化拉普拉斯矩阵来布局神经元。
数据处理
我们使用预处理好的数据集,包含以下组件:
- 化学突触网络
- 电突触网络
- 神经元位置信息
- 神经元类型信息
分析方法
- 构建邻接矩阵表示神经元连接
- 计算度归一化拉普拉斯矩阵
- 计算特征值和特征向量
- 使用特征向量进行可视化布局
这种方法可以有效地展示神经元之间的功能关系,帮助研究者理解神经系统的组织结构。
特征向量与特征值的深入理解
特征向量和特征值是线性代数中的核心概念。一个矩阵M的特征向量v满足:
Mv = λv
其中λ称为特征值。这意味着矩阵M对向量v的作用只是简单地缩放它,而不改变其方向。
旋转矩阵示例
考虑一个绕z轴旋转θ度的3D旋转矩阵R:
theta = np.deg2rad(45)
R = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[ 0, 0, 1]])
z轴向量[0,0,1]是这个矩阵的特征向量,对应的特征值为1,因为旋转不会改变这个向量的方向。
总结
通过SciPy的线性代数工具,我们可以:
- 有效地表示和分析图结构
- 使用拉普拉斯矩阵研究网络性质
- 利用特征向量进行网络划分和可视化
- 解决实际的科学计算问题
线性代数为我们提供了强大的工具来理解和分析复杂系统中的关系,是科学计算不可或缺的一部分。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
617
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258