优雅SciPy项目中的线性代数应用指南
2025-06-02 23:46:44作者:冯梦姬Eddie
线性代数基础概念回顾
线性代数是科学计算的基础,本章将重点介绍SciPy中用于线性代数运算的模块。在开始之前,我们需要明确一些基本概念:
- 向量:有序的数字集合,可以表示为列向量或行向量
- 矩阵:由向量组成的二维数组,可以表示线性变换
- 矩阵乘法:使用
@运算符进行矩阵乘法运算
在Python中,我们通常会遵循线性代数的命名约定,使用大写字母表示矩阵,小写字母表示向量和标量:
import numpy as np
m, n = (5, 6) # 标量
M = np.ones((m, n)) # 矩阵
v = np.random.random((n,)) # 向量
w = M @ v # 另一个向量
图的拉普拉斯矩阵
图论中的图可以用邻接矩阵表示,其中节点编号从0到n-1,如果节点i和j之间有边,则矩阵的(i,j)位置为1。
拉普拉斯矩阵定义
拉普拉斯矩阵L定义为度矩阵D减去邻接矩阵A:
L = D - A
其中度矩阵D是一个对角矩阵,对角线元素表示每个节点的度数(连接的边数)。
拉普拉斯矩阵的性质
拉普拉斯矩阵有许多重要性质,特别是它的特征值和特征向量。第二小的特征值对应的特征向量称为费德勒向量(Fiedler vector),可以用于图的划分。
让我们通过一个简单的网络示例来说明:
A = np.array([[0, 1, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 1, 0]], dtype=float)
计算拉普拉斯矩阵
首先计算度矩阵D:
d = np.sum(A, axis=0)
D = np.diag(d)
然后计算拉普拉斯矩阵L:
L = D - A
特征值与特征向量
计算拉普拉斯矩阵的特征值和特征向量:
val, Vec = np.linalg.eigh(L)
费德勒向量是第二小特征值对应的特征向量:
f = Vec[:, np.argsort(val)[1]]
通过费德勒向量的符号,我们可以将图中的节点分成两组:
colors = ['orange' if eigv > 0 else 'gray' for eigv in f]
nx.draw(g, pos=layout, with_labels=True, node_color=colors)
实际应用:线虫神经元网络分析
让我们看一个实际应用案例:分析线虫的神经元网络。研究人员使用了一种改进的拉普拉斯矩阵——度归一化拉普拉斯矩阵来布局神经元。
数据处理
我们使用预处理好的数据集,包含以下组件:
- 化学突触网络
- 电突触网络
- 神经元位置信息
- 神经元类型信息
分析方法
- 构建邻接矩阵表示神经元连接
- 计算度归一化拉普拉斯矩阵
- 计算特征值和特征向量
- 使用特征向量进行可视化布局
这种方法可以有效地展示神经元之间的功能关系,帮助研究者理解神经系统的组织结构。
特征向量与特征值的深入理解
特征向量和特征值是线性代数中的核心概念。一个矩阵M的特征向量v满足:
Mv = λv
其中λ称为特征值。这意味着矩阵M对向量v的作用只是简单地缩放它,而不改变其方向。
旋转矩阵示例
考虑一个绕z轴旋转θ度的3D旋转矩阵R:
theta = np.deg2rad(45)
R = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[ 0, 0, 1]])
z轴向量[0,0,1]是这个矩阵的特征向量,对应的特征值为1,因为旋转不会改变这个向量的方向。
总结
通过SciPy的线性代数工具,我们可以:
- 有效地表示和分析图结构
- 使用拉普拉斯矩阵研究网络性质
- 利用特征向量进行网络划分和可视化
- 解决实际的科学计算问题
线性代数为我们提供了强大的工具来理解和分析复杂系统中的关系,是科学计算不可或缺的一部分。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19