优雅SciPy项目中的线性代数应用指南
2025-06-02 13:42:03作者:冯梦姬Eddie
线性代数基础概念回顾
线性代数是科学计算的基础,本章将重点介绍SciPy中用于线性代数运算的模块。在开始之前,我们需要明确一些基本概念:
- 向量:有序的数字集合,可以表示为列向量或行向量
- 矩阵:由向量组成的二维数组,可以表示线性变换
- 矩阵乘法:使用
@
运算符进行矩阵乘法运算
在Python中,我们通常会遵循线性代数的命名约定,使用大写字母表示矩阵,小写字母表示向量和标量:
import numpy as np
m, n = (5, 6) # 标量
M = np.ones((m, n)) # 矩阵
v = np.random.random((n,)) # 向量
w = M @ v # 另一个向量
图的拉普拉斯矩阵
图论中的图可以用邻接矩阵表示,其中节点编号从0到n-1,如果节点i和j之间有边,则矩阵的(i,j)位置为1。
拉普拉斯矩阵定义
拉普拉斯矩阵L定义为度矩阵D减去邻接矩阵A:
L = D - A
其中度矩阵D是一个对角矩阵,对角线元素表示每个节点的度数(连接的边数)。
拉普拉斯矩阵的性质
拉普拉斯矩阵有许多重要性质,特别是它的特征值和特征向量。第二小的特征值对应的特征向量称为费德勒向量(Fiedler vector),可以用于图的划分。
让我们通过一个简单的网络示例来说明:
A = np.array([[0, 1, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[1, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 1],
[0, 0, 0, 1, 0, 1],
[0, 0, 0, 1, 1, 0]], dtype=float)
计算拉普拉斯矩阵
首先计算度矩阵D:
d = np.sum(A, axis=0)
D = np.diag(d)
然后计算拉普拉斯矩阵L:
L = D - A
特征值与特征向量
计算拉普拉斯矩阵的特征值和特征向量:
val, Vec = np.linalg.eigh(L)
费德勒向量是第二小特征值对应的特征向量:
f = Vec[:, np.argsort(val)[1]]
通过费德勒向量的符号,我们可以将图中的节点分成两组:
colors = ['orange' if eigv > 0 else 'gray' for eigv in f]
nx.draw(g, pos=layout, with_labels=True, node_color=colors)
实际应用:线虫神经元网络分析
让我们看一个实际应用案例:分析线虫的神经元网络。研究人员使用了一种改进的拉普拉斯矩阵——度归一化拉普拉斯矩阵来布局神经元。
数据处理
我们使用预处理好的数据集,包含以下组件:
- 化学突触网络
- 电突触网络
- 神经元位置信息
- 神经元类型信息
分析方法
- 构建邻接矩阵表示神经元连接
- 计算度归一化拉普拉斯矩阵
- 计算特征值和特征向量
- 使用特征向量进行可视化布局
这种方法可以有效地展示神经元之间的功能关系,帮助研究者理解神经系统的组织结构。
特征向量与特征值的深入理解
特征向量和特征值是线性代数中的核心概念。一个矩阵M的特征向量v满足:
Mv = λv
其中λ称为特征值。这意味着矩阵M对向量v的作用只是简单地缩放它,而不改变其方向。
旋转矩阵示例
考虑一个绕z轴旋转θ度的3D旋转矩阵R:
theta = np.deg2rad(45)
R = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[ 0, 0, 1]])
z轴向量[0,0,1]是这个矩阵的特征向量,对应的特征值为1,因为旋转不会改变这个向量的方向。
总结
通过SciPy的线性代数工具,我们可以:
- 有效地表示和分析图结构
- 使用拉普拉斯矩阵研究网络性质
- 利用特征向量进行网络划分和可视化
- 解决实际的科学计算问题
线性代数为我们提供了强大的工具来理解和分析复杂系统中的关系,是科学计算不可或缺的一部分。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
545
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23