YTsaurus QueryTracker性能优化:解决大规模查询历史下的UI响应问题
2025-07-05 22:10:28作者:平淮齐Percy
问题背景
在YTsaurus分布式计算平台的QueryTracker组件中,随着用户查询历史的不断积累,用户界面(UI)的响应速度逐渐变慢。这一现象在系统运行较长时间后尤为明显,严重影响了用户体验。核心问题在于当前查询历史存储结构的设计无法高效支持大规模数据场景下的快速检索。
现有架构分析
当前系统使用名为finished_queries_by_start_time的数据表来存储已完成查询的历史记录。该表的主键设计为("start_time", "query_id")组合。这种设计存在以下关键问题:
- 全表扫描问题:当执行
list_queries操作时,系统需要对整个表进行扫描才能找到特定用户及其访问控制对象(ACO)的最新查询记录 - 索引缺失:现有表结构缺乏针对用户和ACO的优化索引,导致查询效率低下
- 线性增长瓶颈:随着查询历史数据量的增加,查询性能呈线性下降趋势
优化方案设计
经过技术团队深入分析,提出了一种创新的分表优化方案:
1. 按ACO和时间的分表设计
新建finished_queries_by_aco_and_start_time表,采用("aco", "start_time", "query_id")作为复合主键。这种设计的特点是:
- 每个查询可能对应多条记录(根据ACO数量)
- 支持直接通过ACO前缀快速定位相关查询
- 时间维度保持有序性,便于范围查询
2. 按用户和时间的分表设计
同时创建finished_queries_by_user_and_start_time表,使用("user", "start_time", "query_id")作为主键。该表提供:
- 针对用户维度的快速查询能力
- 保持时间排序特性
- 与ACO表形成互补索引结构
技术优势
- 查询性能提升:将原来的全表扫描转变为三次精确的索引查询(ACO表、用户表和主表各一次)
- 可扩展性增强:新架构能够更好地适应数据量增长,查询性能不会随历史数据增加而显著下降
- 资源利用率优化:通过合理的分表设计,减少了不必要的I/O操作和内存消耗
实现考量
在实际实施过程中,需要考虑以下关键因素:
- 数据一致性:确保三个表之间的数据同步机制可靠
- 写入开销:虽然读取性能提升,但写入时需要维护多个表的索引
- 迁移策略:如何平滑地从旧表结构迁移到新结构而不影响线上服务
总结
这次YTsaurus QueryTracker的性能优化展示了分布式系统设计中索引策略的重要性。通过精心设计的多维度分表结构,有效解决了大规模查询历史下的UI响应问题。这种优化思路不仅适用于YTsaurus系统,对于其他需要处理大量时序数据的分布式系统也具有参考价值。技术团队将继续监控优化效果,并根据实际运行情况进一步调整架构设计。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178