YTsaurus QueryTracker性能优化:解决大规模查询历史下的UI响应问题
2025-07-05 12:24:25作者:平淮齐Percy
问题背景
在YTsaurus分布式计算平台的QueryTracker组件中,随着用户查询历史的不断积累,用户界面(UI)的响应速度逐渐变慢。这一现象在系统运行较长时间后尤为明显,严重影响了用户体验。核心问题在于当前查询历史存储结构的设计无法高效支持大规模数据场景下的快速检索。
现有架构分析
当前系统使用名为finished_queries_by_start_time的数据表来存储已完成查询的历史记录。该表的主键设计为("start_time", "query_id")组合。这种设计存在以下关键问题:
- 全表扫描问题:当执行
list_queries操作时,系统需要对整个表进行扫描才能找到特定用户及其访问控制对象(ACO)的最新查询记录 - 索引缺失:现有表结构缺乏针对用户和ACO的优化索引,导致查询效率低下
- 线性增长瓶颈:随着查询历史数据量的增加,查询性能呈线性下降趋势
优化方案设计
经过技术团队深入分析,提出了一种创新的分表优化方案:
1. 按ACO和时间的分表设计
新建finished_queries_by_aco_and_start_time表,采用("aco", "start_time", "query_id")作为复合主键。这种设计的特点是:
- 每个查询可能对应多条记录(根据ACO数量)
- 支持直接通过ACO前缀快速定位相关查询
- 时间维度保持有序性,便于范围查询
2. 按用户和时间的分表设计
同时创建finished_queries_by_user_and_start_time表,使用("user", "start_time", "query_id")作为主键。该表提供:
- 针对用户维度的快速查询能力
- 保持时间排序特性
- 与ACO表形成互补索引结构
技术优势
- 查询性能提升:将原来的全表扫描转变为三次精确的索引查询(ACO表、用户表和主表各一次)
- 可扩展性增强:新架构能够更好地适应数据量增长,查询性能不会随历史数据增加而显著下降
- 资源利用率优化:通过合理的分表设计,减少了不必要的I/O操作和内存消耗
实现考量
在实际实施过程中,需要考虑以下关键因素:
- 数据一致性:确保三个表之间的数据同步机制可靠
- 写入开销:虽然读取性能提升,但写入时需要维护多个表的索引
- 迁移策略:如何平滑地从旧表结构迁移到新结构而不影响线上服务
总结
这次YTsaurus QueryTracker的性能优化展示了分布式系统设计中索引策略的重要性。通过精心设计的多维度分表结构,有效解决了大规模查询历史下的UI响应问题。这种优化思路不仅适用于YTsaurus系统,对于其他需要处理大量时序数据的分布式系统也具有参考价值。技术团队将继续监控优化效果,并根据实际运行情况进一步调整架构设计。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319