YTsaurus QueryTracker性能优化:解决大规模查询历史下的UI响应问题
2025-07-05 13:35:35作者:平淮齐Percy
问题背景
在YTsaurus分布式计算平台的QueryTracker组件中,随着用户查询历史的不断积累,用户界面(UI)的响应速度逐渐变慢。这一现象在系统运行较长时间后尤为明显,严重影响了用户体验。核心问题在于当前查询历史存储结构的设计无法高效支持大规模数据场景下的快速检索。
现有架构分析
当前系统使用名为finished_queries_by_start_time
的数据表来存储已完成查询的历史记录。该表的主键设计为("start_time", "query_id")
组合。这种设计存在以下关键问题:
- 全表扫描问题:当执行
list_queries
操作时,系统需要对整个表进行扫描才能找到特定用户及其访问控制对象(ACO)的最新查询记录 - 索引缺失:现有表结构缺乏针对用户和ACO的优化索引,导致查询效率低下
- 线性增长瓶颈:随着查询历史数据量的增加,查询性能呈线性下降趋势
优化方案设计
经过技术团队深入分析,提出了一种创新的分表优化方案:
1. 按ACO和时间的分表设计
新建finished_queries_by_aco_and_start_time
表,采用("aco", "start_time", "query_id")
作为复合主键。这种设计的特点是:
- 每个查询可能对应多条记录(根据ACO数量)
- 支持直接通过ACO前缀快速定位相关查询
- 时间维度保持有序性,便于范围查询
2. 按用户和时间的分表设计
同时创建finished_queries_by_user_and_start_time
表,使用("user", "start_time", "query_id")
作为主键。该表提供:
- 针对用户维度的快速查询能力
- 保持时间排序特性
- 与ACO表形成互补索引结构
技术优势
- 查询性能提升:将原来的全表扫描转变为三次精确的索引查询(ACO表、用户表和主表各一次)
- 可扩展性增强:新架构能够更好地适应数据量增长,查询性能不会随历史数据增加而显著下降
- 资源利用率优化:通过合理的分表设计,减少了不必要的I/O操作和内存消耗
实现考量
在实际实施过程中,需要考虑以下关键因素:
- 数据一致性:确保三个表之间的数据同步机制可靠
- 写入开销:虽然读取性能提升,但写入时需要维护多个表的索引
- 迁移策略:如何平滑地从旧表结构迁移到新结构而不影响线上服务
总结
这次YTsaurus QueryTracker的性能优化展示了分布式系统设计中索引策略的重要性。通过精心设计的多维度分表结构,有效解决了大规模查询历史下的UI响应问题。这种优化思路不仅适用于YTsaurus系统,对于其他需要处理大量时序数据的分布式系统也具有参考价值。技术团队将继续监控优化效果,并根据实际运行情况进一步调整架构设计。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648