YTsaurus QueryTracker性能优化:解决大规模查询历史下的UI响应问题
2025-07-05 07:02:42作者:平淮齐Percy
问题背景
在YTsaurus分布式计算平台的QueryTracker组件中,随着用户查询历史的不断积累,用户界面(UI)的响应速度逐渐变慢。这一现象在系统运行较长时间后尤为明显,严重影响了用户体验。核心问题在于当前查询历史存储结构的设计无法高效支持大规模数据场景下的快速检索。
现有架构分析
当前系统使用名为finished_queries_by_start_time的数据表来存储已完成查询的历史记录。该表的主键设计为("start_time", "query_id")组合。这种设计存在以下关键问题:
- 全表扫描问题:当执行
list_queries操作时,系统需要对整个表进行扫描才能找到特定用户及其访问控制对象(ACO)的最新查询记录 - 索引缺失:现有表结构缺乏针对用户和ACO的优化索引,导致查询效率低下
- 线性增长瓶颈:随着查询历史数据量的增加,查询性能呈线性下降趋势
优化方案设计
经过技术团队深入分析,提出了一种创新的分表优化方案:
1. 按ACO和时间的分表设计
新建finished_queries_by_aco_and_start_time表,采用("aco", "start_time", "query_id")作为复合主键。这种设计的特点是:
- 每个查询可能对应多条记录(根据ACO数量)
- 支持直接通过ACO前缀快速定位相关查询
- 时间维度保持有序性,便于范围查询
2. 按用户和时间的分表设计
同时创建finished_queries_by_user_and_start_time表,使用("user", "start_time", "query_id")作为主键。该表提供:
- 针对用户维度的快速查询能力
- 保持时间排序特性
- 与ACO表形成互补索引结构
技术优势
- 查询性能提升:将原来的全表扫描转变为三次精确的索引查询(ACO表、用户表和主表各一次)
- 可扩展性增强:新架构能够更好地适应数据量增长,查询性能不会随历史数据增加而显著下降
- 资源利用率优化:通过合理的分表设计,减少了不必要的I/O操作和内存消耗
实现考量
在实际实施过程中,需要考虑以下关键因素:
- 数据一致性:确保三个表之间的数据同步机制可靠
- 写入开销:虽然读取性能提升,但写入时需要维护多个表的索引
- 迁移策略:如何平滑地从旧表结构迁移到新结构而不影响线上服务
总结
这次YTsaurus QueryTracker的性能优化展示了分布式系统设计中索引策略的重要性。通过精心设计的多维度分表结构,有效解决了大规模查询历史下的UI响应问题。这种优化思路不仅适用于YTsaurus系统,对于其他需要处理大量时序数据的分布式系统也具有参考价值。技术团队将继续监控优化效果,并根据实际运行情况进一步调整架构设计。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869