Liger-Kernel项目中的Z Loss优化技术解析
2025-06-10 12:28:22作者:尤辰城Agatha
在大型语言模型(LM)的预训练过程中,损失函数的优化一直是研究者关注的重点。Liger-Kernel项目近期针对Z Loss优化技术展开了深入讨论和实现工作,这项技术在Chameleon和PaLM等知名模型中已被证明能有效提升训练稳定性。
Z Loss技术背景
Z Loss是一种在交叉熵损失函数基础上增加的辅助损失项,主要用于解决语言模型预训练过程中可能出现的数值不稳定问题。其核心思想是通过约束logits的L2范数来防止数值爆炸,从而提升训练过程的稳定性。
技术实现要点
Liger-Kernel团队在实现Z Loss时考虑了以下几个关键技术点:
-
与线性头的融合:相比现有实现,Liger-Kernel特别注重将Z Loss与线性头(linear head)的计算进行融合优化,这种设计可以显著减少内存访问开销,提升计算效率。
-
数值稳定性处理:在实现过程中,团队特别注意处理极端值情况,避免因数值不稳定导致的训练崩溃问题。
-
梯度计算优化:Z Loss的梯度计算需要特殊处理,团队通过精心设计的反向传播路径确保梯度计算的准确性和效率。
与标签平滑的关系
值得注意的是,Z Loss常与标签平滑(label smoothing)技术配合使用。Liger-Kernel项目已经单独跟踪了标签平滑的实现,并将Z Loss作为独立功能进行开发,以避免功能重复。这种模块化设计使得开发者可以灵活选择使用Z Loss、标签平滑或两者结合。
应用价值
在实际应用中,Z Loss技术带来了以下优势:
- 显著提升大规模语言模型训练的稳定性
- 减少训练过程中的数值异常情况
- 与现有优化器良好兼容,无需额外调整
- 计算开销小,几乎不影响整体训练速度
Liger-Kernel团队通过精心设计和实现,使得这一技术可以无缝集成到现有的训练流程中,为开发者提供更稳定、高效的模型训练体验。这项工作的完成标志着Liger-Kernel在深度学习基础设施领域又迈出了重要一步。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246