Glow 项目使用教程
2024-10-09 02:59:41作者:钟日瑜
1. 项目介绍
Glow 是一个专为神经网络硬件加速器设计的编译器和执行引擎。它旨在作为高级机器学习框架的后端使用。Glow 编译器设计用于支持神经网络图的最新编译器优化和代码生成。该项目目前处于活跃开发阶段,项目计划在 GitHub 的 issues 部分和 Roadmap wiki 页面中描述。
Glow 的核心功能包括:
- 将传统的神经网络数据流图降低为两阶段的强类型中间表示(IR)。
- 高级 IR 允许优化器执行领域特定的优化。
- 低级指令基的地址仅 IR 允许编译器执行内存相关的优化,如指令调度、静态内存分配和复制消除。
- 最低级别的优化器执行特定于机器的代码生成,以利用专用硬件特性。
2. 项目快速启动
系统要求
Glow 可以在 macOS 和 Linux 上构建和运行。软件依赖于支持 C++11 的现代 C++ 编译器、CMake、LLVM (>=7.0)、glog、protocol buffers 和 libpng。
获取 Glow
首先,克隆 Glow 仓库:
git clone https://github.com/pytorch/glow.git
cd glow
初始化子模块
Glow 依赖于一些子模块,如 googletest、onnx 和用于 FP16 转换的库。运行以下命令初始化这些子模块:
git submodule update --init --recursive
构建 Glow
创建一个构建目录并运行 CMake 配置构建:
mkdir build_Debug
cd build_Debug
cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug ../glow
ninja all
macOS 依赖安装
使用 Homebrew 安装所需依赖:
brew install cmake graphviz libpng ninja protobuf wget glog autopep8 llvm \
boost double-conversion gflags jemalloc libevent lz4 openssl pkg-config \
snappy xz
Ubuntu 依赖安装
在 Ubuntu 上安装所需依赖:
sudo apt-get install clang clang-8 cmake graphviz libpng-dev \
libprotobuf-dev llvm-8 llvm-8-dev ninja-build protobuf-compiler wget \
opencl-headers libgoogle-glog-dev libboost-all-dev \
libdouble-conversion-dev libevent-dev libssl-dev libgflags-dev \
libjemalloc-dev libpthread-stubs0-dev liblz4-dev libzstd-dev libbz2-dev \
libsodium-dev libfmt-dev
3. 应用案例和最佳实践
应用案例
Glow 可以用于各种神经网络的加速,特别是在需要高性能计算的场景中。例如,它可以用于图像识别、自然语言处理和推荐系统等应用。
最佳实践
- 优化模型:使用 Glow 的优化功能来减少模型的计算复杂度。
- 硬件加速:利用 Glow 的硬件加速功能来提高模型的执行速度。
- 多平台支持:Glow 支持多种硬件平台,确保模型在不同设备上的兼容性。
4. 典型生态项目
PyTorch
Glow 可以作为 PyTorch 的后端,提供更高效的神经网络执行。
ONNX
Glow 支持 ONNX 模型格式,使得模型可以在不同框架之间无缝转换。
LLVM
Glow 依赖 LLVM 进行代码生成和优化,确保生成的代码具有高性能。
通过以上步骤,您可以快速启动并使用 Glow 项目,享受其强大的神经网络编译和执行能力。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1